Abstract:
This invention describes a biophysical method in which combination of drugs are used for the cure of MI's and ischemic strokes, even in cases of multiple site blockages. The method is more convenient in the sense it does not require the use of specialized personnel or equipment and the combination of drugs used is more effective and safer than the existing methods. It has had a 100% success rate in preventing fatalities. It reperfuses the myocardium or cerebral tissue very rapidly and reduces haemorrhage volume in haemorrhagic strokes.
Abstract:
A process for manufacturing a thermoelectric material having a plurality of grains and grain boundaries. The process includes determining a material composition to be investigated for the thermoelectric material and then determining a range of values of grain size and/or grain boundary barrier height obtainable for the material composition using current state of the art manufacturing techniques. Thereafter, a range of figure of merit values for the material composition is determined as a function of the range of values of grain size and/or grain boundary barrier height. And finally, a thermoelectric material having the determined material composition and an average grain size and grain boundary barrier height corresponding to the maximum range of figure of merit values is manufactured.
Abstract:
A thermoelectric material is provided. The material can be a grain boundary modified nanocomposite that has a plurality of bismuth antimony telluride matrix grains and a plurality of zinc oxide nanoparticles within the plurality of bismuth antimony telluride matrix grains. In addition, the material has zinc antimony modified grain boundaries between the plurality of bismuth antimony telluride matrix grains.
Abstract:
A thermoelectric material is provided. The material can be a grain boundary modified nanocomposite that has a plurality of bismuth antimony telluride matrix grains and a plurality of zinc oxide nanoparticles within the plurality of bismuth antimony telluride matrix grains. In addition, the material has zinc antimony modified grain boundaries between the plurality of bismuth antimony telluride matrix grains.
Abstract:
An example apparatus for obtaining a desired magnetic field distribution from an incident magnetic field, such as a kHz magnetic field, comprises a structure receiving the incident magnetic field and generating the desired magnetic field distribution at a predetermined distance from the transmitting side of the apparatus. The desired magnetic field distribution results from a spatial distribution of induced electrical current over the structure. Examples of the invention also include design methods and methods of using the apparatus.
Abstract:
Electromagnetic devices and near field plates for three-dimensional magnetic field manipulation are disclosed. In one embodiment, an electromagnetic device includes a rotor, a stator, and a magnetic field focusing device. The rotor may include a rotor body and a plurality of radially extending rotor poles. The stator may include a plurality of stator poles radially extending inwardly from a stator body toward the rotor body. Each stator pole may have a magnetic flux generating device and a stator pole tip, wherein an air gap may be located between each stator pole tip and each corresponding rotor pole. The magnetic field focusing device is coupled to at least one stator pole tip and produces a magnetic field profile having at least one concentrated magnetic flux region proximate the stator pole tip. The magnetic field focusing device twists the magnetic field profile by an angle α.
Abstract:
An omnidirectional reflector that reflects a band of electromagnetic radiation of less than 100 nanometers when viewed from angles between 0 and 45 degrees is provided. The omnidirectional reflector includes a multilayer stack having a plurality of layers of high index of refraction material and a plurality of layers of low index of refraction material. In addition, the plurality of high index of refraction material layers and low index of refraction material layers are alternately stacked on top of or across each other and provide a non-periodic layered structure.
Abstract:
A process for manufacturing a nanocomposite thermoelectric material having a plurality of nanoparticle inclusions. The process includes determining a material composition to be investigated for the nanocomposite thermoelectric material, the material composition including a conductive bulk material and a nanoparticle material. In addition, a range of surface roughness values for the insulating nanoparticle material that can be obtained using current state of the art manufacturing techniques is determined. Thereafter, a plurality of Seebeck coefficients, electrical resistivity values, thermal conductivity values and figure of merit values as a function of the range of nanoparticle material surface roughness values is calculated. Based on these calculated values, a nanocomposite thermoelectric material composition or ranges of compositions is/are selected and manufactured.
Abstract:
A method for producing a multi-layer photonic structure having at least one group of alternating layers of high index material and low index material may include, determining a characteristic property function for the multi-layer photonic structure, determining a thickness multiplier for the at least one group of alternating layers based on a comparison of the characteristic property function to a target profile, adjusting the characteristic property function with the determined thickness multiplier, and comparing an adjusted characteristic property function to the target profile, wherein, when the adjusted characteristic property function does not approximate the target profile, at least one additional group of layers is added to the multi-layer photonic structure.
Abstract:
The present invention is generally directed to a method, system, and article of manufacture that provides an internationalization service in a generalized message-oriented middleware system. In one embodiment, the internationalization handler for the MOM messages exists on both the message-producing and the message-consuming sides. The front-end server and back-send server application containers pass control to the internationalization handlers at predefined points during message production and consumption. On the message production side, the message producer passes control to the internationalization handler after the creation of the MOM message is complete but before the message is dispatched by the MOM for routing and delivery. On the message consumption side, the back end application passes control to the consumer side JMS internationalization handler just before invoking an “onMessage” method or similar message listener method. Some embodiments may also include a reply indicator to indicate whether or not the message is a reply to a service request.