Abstract:
An arrangement to transmit magnetic resonance signals has a local coil composed of a number of individual antennas for acquisition of radio-frequency signals of a magnetic resonance examination. Preamplifiers amplify the radio-frequency signals, and a transmission device transmits the radio-frequency signals from the local coil to the preamplifiers. The transmission device is fashioned as a readout coil and has a number of individual antennas. The individual antennas of the readout coil are magnetically coupled with the individual antennas of the local coil, with the individual antennas of the local coil and the individual antennas of the readout coil forming a linear MIMO transmission system describable by a transmission matrix.
Abstract:
Feed line for at least one local coil in a magnetic resonance tomography apparatus, comprising at least one coil plug as well as at least one standing wave barrier for suppression of unwanted radio-frequency currents on a conductor cable of the feed line, with the standing wave barrier integrated into the coil plug.
Abstract:
A circularly polarizing antenna for a magnetic resonance apparatus is formed by a first linear antenna subsystem and a second antenna subsystem arranged so as to be rotated 90.degree. relative to each other. On the side of the signal terminals and each antenna subsystem has a self-contained conductor. On the side facing away from the signal terminals, the antenna subsystems have a common self-contained conductor.
Abstract:
A circuit for detuning a resonator in a nuclear magnetic resonance imaging apparatus has an output connected to a terminal of the resonator via a high-frequency line composed of two conductors. The resonator is shortened at this terminal with a shorting capacitor that can be short-circuited for detuning the resonator. The length of the high-frequency line is shorter than one-fourth of the wavelength of a high-frequency signal having the operating frequency of the nuclear magnetic resonance imaging apparatus on the high-frequency line. For detuning the resonator the high-frequency line can be terminated at the output with a further capacitor, so that the high-frequency line acts as a short-circuit at the terminal.
Abstract:
An MR coil is provided including at least one antenna element. The antenna element has at least one expandable conductor section with a plastic cover and a core including conductive fluid.
Abstract:
A local coil for a magnetic resonance tomography device includes a plurality of antenna elements. Each antenna element of the plurality of antenna elements has two conductor tracks. The conductor tracks are disposed on opposite sides of an insulator and are connected electrically conductively to one another by plated through-holes through the insulator. In areas, in which conductor tracks of at least two antenna elements of the plurality of antenna elements cross, at least one antenna element of the at least two antenna elements only has a conductor track on one side of the insulator.
Abstract:
The present embodiments relate to a local coil for a magnetic resonance tomography system. The local coil includes a preamplifier for amplification of a signal received by the local coil from an examination object in a receive phase of the local coil. The local coil also includes a detuning device for detuning the local coil in a transmit phase of the local coil, and a rectification device for supplying voltage to the preamplifier.
Abstract:
The transmission antenna apparatus is configured for emitting transmission magnetic fields in magnetic resonance imaging devices and includes one or more flat antennas. A magnetic resonance imaging device includes such a transmission antenna apparatus.
Abstract:
A simple connection of a coil with a magnetic resonance tomography (MRT) is facilitated by a method and an adapter wherein a coil-connection element of at least one local coil is connected with an MRT-connection element of an MRT system. The adapter has a coil-connection element adapter designed to form a connection with at least one coil-connection element of at least one local coil. The adapter also has at least one MRT-connection element adapter designed to form a connection with an MRT-connection element of an MRT system. The adapter can be fixed mechanically to a fixing element of the MRT system.
Abstract:
An array antenna for magnetic resonance applications has at least one first and one second conductor loop in which radio-frequency currents oscillate in respective current flow directions in the operation of the array antenna. The respective conductor loops are divided into first or second loop segments in their respective current flow directions. The first loop segments are capacitively coupled with one another by first capacitors, the second loop segments are capacitively coupled with one another of second capacitors. The loop segments are fashioned as conductor traces of a circuit board that has at least one first and one second electrically insulating support layer. The support layers abut one another with the exception of conductor traces arranged between the first support layer and the second support layer. The capacitors are respectively formed by end regions of the first or second loop segments abutting one another as viewed in the respective current flow direction. The end regions overlap as viewed in the respective current flow direction. Exactly one of the support layers is between the overlapping end regions of the loop segments. The first and the second conductor loops intersect in intersection regions. Neither the a loop segments of the first conductor loop nor a loop segments of the second conductor loop are arranged between the first support layer and the second support layer in the intersection regions.