Abstract:
An object detection apparatus includes an incident optical system, which includes light source units and a combining unit combining light beams emitted from the light source units; a deflection unit including rotating reflection parts that deflect the light beams to scan and be irradiated on a predetermined range of an object; an imaging unit forming an image based on the light from the predetermined range of the object; and an optical detection unit detecting the object based on the light received via the imaging unit. Further the combining unit combines the light beams such that each of the combined light beams passes a single light path when projected onto a predetermined plane, and each of the light paths exists outside a region of the deflection unit when projected onto the first plane.
Abstract:
An optical scanning device including a light source, a deflection device to deflect a light beam from the light source, an image focus optical system to focus the light beam deflected by the deflection device on a scanned surface to form an image thereon and scan a surface by the light beam deflected by deflection device to form an image thereon, a light path switching device provided between the light source and the deflection device, which switches a light path of the light beam emitted from the light source to deflect the light beam on different timings such that the light beam scans different surfaces.
Abstract:
An optical delay element including a photonic crystal line defect optical waveguide is disclosed that has a large group refractive index and has small or nearly constant wavelength dispersion of the group refractive index in a wide wavelength region for practical use. The optical delay element includes a line defect optical waveguide formed in a photonic crystal structure, and the volume of the line defect optical waveguide is less than the volume of a single line defect optical waveguide. Thereby, the waveguide band of the line defect optical waveguide has two zero points in the third order dispersion curve of the line defect optical waveguide, and the sign of the third order dispersion curve is inverted near the zero points. Therefore, the waveguide band of the line defect optical waveguide is modified, and this enables expansion of the wavelength region having a large group refractive index, small wavelength dispersion of the group refractive index, and small wavelength dispersion of the speed of optical pulses.
Abstract:
A polarization diffraction grating includes two media having different orientation states arranged alternately and cyclically, wherein each boundary between the media forms an oblique rectangular shape.
Abstract:
A method of producing a hologram element is disclosed that is able to prevent spread of a polymerization reaction and light leakage during exposure with interference light, and improve productivity in mass production. The hologram element is for transmitting, reflecting, diffracting, or scattering incident light, and includes a pair of substrates, an isolation member between the substrates that forms an isolated region, and a photo-sensitive recording material sealed in the isolated region. The hologram element includes a periodic structure formed by exposing the recording material to interference light. The interference light is generated by two or more light beams, or by using a master hologram. The recording material is formed from a composite material including a polymerized polymer or a polymerized liquid crystal. The periodic structure is formed by exposing the recording material to the interference light to induce the polymerization reaction and phase separation in the composite material.
Abstract:
An optical pickup unit includes a light source of semiconductor laser chips of different light-emission wavelengths; a plurality of holograms placed between the light source and an optical recording medium, the holograms including at least one non-polarization hologram having a substantially uniform diffraction efficiency irrespective of the direction of polarization of incident light and at least one polarization hologram having a diffraction efficiency varying depending on the direction of polarization of incident light; and a wave plate provided between the optical recording medium and the polarization hologram. The returning beam of a light beam emitted from a selected one of the semiconductor laser chips is diffracted by the corresponding one of said holograms to be received by a light-receiving element. The wave plate turns the direction of polarization of the returning beam to a different direction from that of the emitted light beam.
Abstract:
An optical pickup apparatus includes first and second light sources which selectively emit one of first and second light beams, the first and second light beams being different in wavelength, the wavelengths of the first and second light beams being appropriate for accessing first and second optical disks respectively. A coupling lens converts a corresponding one of the first and second light beams into a collimated beam. An objective lens forms a light spot on a corresponding one of the first and second optical disks by focusing the collimated beam. A holographic optical element receives a reflection beam of the light spot from one of the first and second optical disks and provides holographic effects on the reflection beam so as to diffract the reflection beam in predetermined diffracting directions depending on the wavelength of the reflection beam. A photodetector receives the reflection beam from the holographic optical element at light receiving areas and outputs signals indicative of respective intensities of the received reflection beam at the light receiving areas, so that a focusing error signal and a tracking error signal are generated based on the signals.
Abstract:
A rotation quantity measuring method and system measures a rotation quantity of an object body. The rotation quantity is measured by irradiating a light from a light source on a grating pattern which is formed on a peripheral surface of a cylindrical body which rotates integrally with the object body, and detecting a shadow picture pattern which is generated by a reflected light received from the grating pattern based on a diffraction caused by the grating pattern. Then, the rotation quantity of the object body is measured based on a movement of the shadow picture pattern as the object body rotates.
Abstract:
A plurality of laser beams are applied to a scanning medium at different positions thereon and are converted thereby to respective scanning light beams. The laser beams are modulated by color image signals representative of respective differently colored images. As the scanning medium rotates, it deflects the applied laser beams and emits them as the scanning light beams. The scanning light beams are then applied to respective photosensitive bodies to scan them, forming latent images thereon which correspond to the color image signals, respectively. The latent images are developed into respective color images which are transferred and fixed to a single recording medium thereby to form a color image thereon.
Abstract:
In an optical scanning apparatus, a hologram prepared by the interference of two rays of light, each of which has a spherical wave or one of which has a spherical wave and the other of which has a plane wave, is illuminated by a reconstruction light containing an image signal, and the reconstruction light and the hologram are moved relative to each other. A beam produced from the hologram in accordance with the relative movement of the hologram is led onto a surface to be scanned, while continuously changing its output angle, and plural beams containing image information therein, which are modulated by plural and different image signals, are caused to enter the hologram simultaneously. Plural beams are thus diffracted and plural lines on the surface to be scanned are scanned simultaneously.