摘要:
In system of networks that are not fully meshed with each other and that are capable of processing distributed hash table (DHT) Put and Get messages, message flooding of GET messages is limited by maintaining a list of DHTs the GET has visited. Also, PUT messages include not only the storage location key in the home network but also a list of networks that the PUT has visited, in essence establishing a dynamically changing path within the PUT back to the home network.
摘要:
In general, techniques are described for providing feedback loops for service engineered paths. A service node comprising an interface and a control unit may implement the techniques. The interface receives traffic via a path configured within a network to direct the traffic from an ingress network device of the path to the service node. The control unit applies one or more services to the traffic received via the path and generates service-specific information related to the application of the one or more services to the traffic. The interface then sends the service-specific information to at least one network device configured to forward the traffic via the path so that the at least one network device configured to forward the traffic via the path is able to adapt the path based on the service-specific information.
摘要:
In one embodiment, a method comprises receiving a request for a distributed service, the distributed service offered by a service provider via a data communications network having service delivery locations reachable via a prescribed physical topology; identifying the service delivery locations within a prescribed logical topology overlying the prescribed physical topology, the prescribed logical topology segregating the distributed service from other network traffic on the prescribed physical topology; and identifying one or more of the service delivery locations optimized for providing the distributed service to at least one service consumption location in the prescribed logical topology according to a prescribed service level agreement with the service provider.
摘要:
In one embodiment, a particular device in a computer network maintains a locally owned tunnel-state table, and joins a distributed hash table (DHT) ring. In addition, the locally owned tunnel-state table is shared with other devices of the DHT ring to establish a DHT-owned tunnel-state table. The particular device (and other devices) determines ownership of link-state advertisements (LSAs) for a specific portion of a traffic engineering database (TED) according to the DHT ring. As such, when the particular device (or any device) computes a path for a tunnel using a local TED, the particular device may request permission to use resources along the computed path that were advertised in particular LSAs from owners of those particular LSAs when not owned by the particular device.
摘要:
A software reload is executed. The hardware associated with the network device continues to forward network traffic during the software reload. Also, a kernel of the network device operates unaffected in a protected address space throughout the software reload. Further, the kernel preserves local checkpointed and shared memory data. Application processes running on the network node are shut down gracefully. The reloaded software is brought up and the network device is resynchronized.
摘要:
Using the ALTO Service, networking applications can request through the ALTO protocol information about the underlying network topology from the ISP or Content Provider. The ALTO Service provides information such as preferences of network resources with the goal of modifying network resource consumption patterns while maintaining or improving application performance. This document describes, in one example, an ALTO server that implements enhancements to the ALTO service to enable initiating incremental updates of network and cost maps to ALTO clients upon receiving status information from a content delivery network (CDN) node.
摘要:
A node in an overlay network requests a ranked list of other nodes in the overlay network that can provide a desired piece of content or service to the requesting node. A separate node such as a router generates the ranked list using a routing algorithm, returning the list to the requesting node so that the requesting node may acquire the desired content or service from the nearest node in the overlay network.
摘要:
A system and method are disclosed for processing a packet. Processing the packet comprises receiving the packet; translating the packet from a first protocol-specific format to a canonical packet format; translating the packet from the canonical packet format to a second protocol-specific format; and forwarding the packet.
摘要:
A data processing method comprising establishing a first node in a peer-to-peer data communications network, wherein the node is configured as a supernode in conformance with a peer-to-peer communications protocol, wherein the first node is configured as an active listener to one or more network routing protocols executing at a network router; receiving a routing information message from one of the network routing protocols; modifying an operational characteristic of the first node in response to the routing information message; receiving a request from a second node in the peer-to-peer network for a resource that is known to the first node; and responding to the request based on the modified operational characteristic. For example, a peer-to-peer node may be configured as a network-aware BitTorrent Tracker, Gnutella supernode, etc., and can use IGP and BGP information from a router to determine how the node behaves.
摘要:
A data processing method comprising establishing a first node in a peer-to-peer data communications network, wherein the node is configured as a supernode in conformance with a peer-to-peer communications protocol, wherein the first node is configured as an active listener to one or more network routing protocols executing at a network router; receiving a routing information message from one of the network routing protocols; modifying an operational characteristic of the first node in response to the routing information message; receiving a request from a second node in the peer-to-peer network for a resource that is known to the first node; and responding to the request based on the modified operational characteristic. For example, a peer-to-peer node may be configured as a network-aware BitTorrent Tracker, Gnutella supernode, etc., and can use IGP and BGP information from a router to determine how the node behaves.