Abstract:
An organic light emitting diode device includes a substrate, a thin film transistor on the substrate, a first pixel electrode electrically connected to the thin film transistor, a pixel defining layer on the first pixel electrode and partitioning a light emitting region, a second pixel electrode contacting the first pixel electrode at the light emitting region, a light emitting layer contacting the second pixel electrode at the light emitting region, and a common electrode on the light emitting layer; and a method of manufacturing the same is provided.
Abstract:
An organic light emitting display device including: a substrate; a sealing member; an organic light emitting device between the substrate and the sealing member and for displaying images; a selective light absorbing layer on a surface of the sealing member facing the organic light emitting device and including pigments for selectively absorbing light; and a black matrix layer on the selective light absorbing layer corresponding to non-emission areas of the organic light emitting device.
Abstract:
An organic light-emitting display device includes a substrate; a thin-film transistor on the substrate; a first insulating layer covering the thin-film transistor; a first electrode on the first insulating layer, and electrically connected to the thin-film transistor; a second insulating layer on the first insulating layer so as to cover the first electrode, and having an opening for exposing a part of the first electrode; a porous member in the second insulating layer; a second electrode on the second insulating layer, and facing the first electrode so as to correspond to the opening; and an organic emission layer between the first electrode and the second electrode so as to correspond to the opening. The organic light-emitting display device may prevent degradation of characteristics of an organic light-emitting device due to discharge of gas from an organic material.
Abstract:
A condensed-cyclic compound of Formula 1, an organic light-emitting diode (OLED) including the same and a flat panel display device including the OLED. The condensed-cyclic compound of Formula 1 may be used in an organic light-emitting diode. Accordingly, an OLED according to an embodiment of the present invention includes a first electrode, a second electrode disposed opposite to the first electrode, and a first layer interposed between the first electrode and the second electrode, wherein the first layer includes the condensed-cyclic compound represented by Formula 1. The OLED may further include at least one layer selected from the group consisting of a hole injection layer, a hole transport layer, an emission layer, a hole blocking layer, an electron transport layer and an electron injection layer.
Abstract:
A heterocyclic compound represented by Formula 1 below and an organic light-emitting device including the heterocyclic compound: wherein Ar1, Ar2, X, and R1 to R5 are defined as in the specification.
Abstract:
A heterocyclic compound represented by Formula 1 below and an organic light-emitting device including the heterocyclic compound: wherein R1 through R9 are defined as in the specification.
Abstract:
Disclosed is an organic light emitting device which includes a substrate; a encapsulation substrate, an organic light emitting unit interposed between the substrate and the encapsulation substrate. A water vapor absorption material-containing transparent sealant layer covers the organic light emitting unit. The sealant layer includes a transparent sealant having a water vapor transmission rate (WVTR) of about 20 g/m2·day or less and a water vapor absorption material having an average particle size of about 100 nm or less.
Abstract translation:公开了一种包括基板的有机发光器件; 封装基板,介于基板和封装基板之间的有机发光单元。 含有水蒸汽吸收材料的透明密封剂层覆盖有机发光单元。 密封剂层包括水蒸气透过率(WVTR)为约20g / m 2·天以下的透明密封剂和平均粒径为约100nm以下的水蒸气吸收材料。
Abstract:
A display substrate includes a base substrate, a first storage electrode, a second storage electrode, a first insulating layer, a first spacing member and a second spacing member. The base substrate includes a first pixel region and a second pixel region that are defined by a plurality of gate lines and a plurality of source lines extended in a direction different from an extended direction of the gate lines. The first storage electrode is in the first pixel region. The second storage electrode is in the second pixel region. The first insulating layer covers the first storage electrode, and has a recessed portion on the second storage electrode. The first spacing member is on the first insulating layer corresponding to the first storage electrode. The second spacing member is on the recessed portion.
Abstract:
An organic light emitting display apparatus that has high (or improved) contrast and/or impact resistance. The organic light emitting display apparatus includes: a substrate; an organic light emitting device on the substrate to display an image; a sealing member on the organic light emitting device; a semitransparent film on a surface of the sealing member facing away from the organic light emitting device to transmit a portion of external light and to reflect another portion of the external light; a passivation film on the semitransparent film to protect the semitransparent film; and a transmissive black layer between the sealing member and the organic light emitting device to increase contrast, wherein the semitransparent film has a refractive index greater than that of the passivation film.
Abstract:
An organic light-emitting display device which is transparent by improving a transmittance in transmitting regions and which reduces a voltage drop in an opposite electrode comprises: a substrate having a transmitting region and pixel regions separated from each other by the transmitting region; thin film transistors positioned on the substrate and disposed in the pixel regions, respectively; a passivation layer covering the thin film transistors, formed in the transmitting region and the pixel regions, and having a first opening formed in a location corresponding to at least a portion of the transmitting region; pixel electrodes formed on the passivation layer so as to be electrically connected to the thin film transistors, respectively, located in the pixel regions, and disposed so as to overlap and cover the thin film transistors, respectively; an opposite electrode facing the pixel electrodes, formed so as to be able to transmit light, and located in the transmitting region and the pixel regions; an organic emission layer interposed between the pixel electrodes and the opposite electrode so as to emit light; and a conduction unit formed of a conductive material, disposed so as to overlap with the first opening, and contacting the opposite electrode.