Abstract:
A feed-through filter capacitor assembly using an electrically conductive adhesive modified with a filler of low coefficient of thermal expansion (CTE) to provide a conductive relation between the conductive pin and the electrode plates of the ceramic capacitor. The conductive adhesive contains an organic polymer-based adhesive component that has a CTE greater than the CTE of the capacitor ceramic body and a conductive metal filler having a CTE lower than the adhesive component. The conductive adhesive is further provided with a CTE-lowering filler that has a CTE lower than the CTE of the conductive metal filler, thereby lowering the overall CTE of the adhesive to a value closer to the CTE of the capacitor ceramic body.
Abstract:
A capacitor including at least one interior metallization plane or plate and a multiplicity of vias for forming multiple redundant electrical connections within the capacitor. Series capacitors are provided having at least two interior plates redundantly electrically connected to at least two respective exterior plates. R-C devices are provided having multiple redundant vias filled with resistor material and/or conductor material to provide a resistor either in series with or parallel to a capacitor. Capacitors and R-C devices are provided having end terminations for applying voltage differential. Further, a method for making single capacitors, multiple parallel array capacitors, series capacitors and R-C devices is provided in which the chips are formed from the bottom up.
Abstract:
A capacitor including at least one interior metallization plane or plate and a multiplicity of vias for forming multiple redundant electrical connections within the capacitor. Series capacitors are provided having at least two interior plates redundantly electrically connected to at least two respective exterior plates. R-C devices are provided having multiple redundant vias filled with resistor material and/or conductor material to provide a resistor either in series with or parallel to a capacitor. Capacitors and R-C devices are provided having end terminations for applying voltage differential. Further, a method for making single capacitors, multiple parallel array capacitors, series capacitors and R-C devices is provided in which the chips are formed from the bottom up.
Abstract:
An ear canal device holder for devices other than speaker/microphone amplification systems that am to be inserted into the canal of the human ear. The device holder is made of a flexible silicone material comprising a body and structural support element(s) such that the device is held within the body of the holder and the body and device are secured in the ear by the structural element(s). In addition the device holder minimizes the attenuation of sound waves that pass through the ear canal to the tempanic membrane, while maximizing comfort and secure fit.
Abstract:
A fuel cell device with a rectangular solid ceramic substrate extending in length between first and second end surfaces where thermal expansion occurs primarily along the length. An active structure internal to the exterior surface extends along only a first portion of the length and has an anode, cathode and electrolyte therebetween. The first portion is heated to generate a fuel cell reaction. A remaining portion of the length is a non-heated, non-active section lacking opposing anode and cathode where heat dissipates along the remaining portion away from the first portion. A second portion of the length in the remaining portion is distanced away from the first portion such that its exterior surface is at low temperature when the first portion is heated. The anode and cathode have electrical pathways extending from the internal active structure to the exterior surface in the second portion for electrical connection at low temperature.
Abstract:
Fuel cell devices and systems are provided. In certain embodiments, the devices include a ceramic support structure having a length, a width, and a thickness with the length direction being the dominant direction of thermal expansion. A reaction zone having at least one active layer therein is spaced from the first end and includes first and second opposing electrodes, associated active first and second gas passages, and electrolyte. The active first gas passage includes sub-passages extending in the y direction and spaced apart in the x direction. An artery flow passage extends from the first end along the length and into the reaction zone and is fluidicly coupled to the sub-passages of the active first gas passage. The thickness of the artery flow passage is greater than the thickness of the sub-passages. In other embodiments, fuel cell devices include second sub-passages for the active second gas passage and a second artery flow passage coupled thereto, and extending from either the first end or the second end into the reaction zone. In yet other embodiments, one or both electrodes of a fuel cell device are segmented.
Abstract:
A fuel cell device with a rectangular solid ceramic substrate extending in length between first and second end surfaces where thermal expansion occurs primarily along the length. An active structure internal to the exterior surface extends along only a first portion of the length and has an anode, cathode and electrolyte therebetween. The first portion is heated to generate a fuel cell reaction. A remaining portion of the length is a non-heated, non-active section lacking opposing anode and cathode where heat dissipates along the remaining portion away from the first portion. A second portion of the length in the remaining portion is distanced away from the first portion such that its exterior surface is at low temperature when the first portion is heated. The anode and cathode have electrical pathways extending from the internal active structure to the exterior surface in the second portion for electrical connection at low temperature.
Abstract:
A fuel cell device is provided having an active central portion with an anode, a cathode, and an electrolyte therebetween. At least three elongate portions extend from the active central portion, each having a length substantially greater than a width transverse thereto such that the elongate portions each have a coefficient of thermal expansion having a dominant axis that is coextensive with its length. A fuel passage extends from a fuel inlet in a first elongate portion into the active central portion in association with the anode, and an oxidizer passage extends from an oxidizer inlet in a second elongate portion into the active central portion in association with the cathode. A gas passage extends between an opening in the third elongate portion and the active central portion. For example, the passage in the third elongate portion may be an exhaust passage for the spent fuel and/or oxidizer gasses.
Abstract:
The invention provides tubular solid oxide fuel cell devices and a fuel cell system incorporating a plurality of the fuel devices, each device including an elongate tube having a reaction zone for heating to an operating reaction temperature, and at least one cold zone that remains at a low temperature below the operating reaction temperature when the reaction zone is heated. An electrolyte is disposed between anodes and cathodes in the reaction zone, and the anode and cathode each have an electrical pathway extending to an exterior surface in a cold zone for electrical connection at low temperature. In one embodiment, the tubular device is a spiral rolled structure, and in another embodiment, the tubular device is a concentrically arranged device. The system further includes the devices positioned with their reaction zones in a hot zone chamber and their cold zones extending outside the hot zone chamber. A heat source is coupled to the hot zone chamber to heat the reaction zones to the operating reaction temperature, and fuel and air supplies are coupled to the tubes in the cold zones.
Abstract:
Fuel cell devices and systems are provided. In certain embodiments, the devices include a ceramic support structure having a length, a width, and a thickness. A reaction zone positioned along a portion of the length is configured to be heated to an operating reaction temperature, and has at least one active layer therein comprising an electrolyte separating first and second opposing electrodes, and active first and second gas passages adjacent the respective first and second electrodes. At least one cold zone positioned from the first end along another portion of the length is configured to remain below the operating reaction temperature. An artery flow passage extends from the first end along the length through the cold zone and into the reaction zone and is fluidicly coupled to the active first gas passage, which extends from the artery flow passage toward at least one side. The thickness of the artery flow passage is greater than the thickness of the active first gas passage. In other embodiments, fuel cell devices include an electrolyte having at least a portion thereof comprising a ceramic material sintered from a nano-sized powder. In yet other embodiments, cold zones are provided at each end of the device with the reaction zone therebetween having at least two discrete power sections, each having one or more active layers, the power sections fed by discrete fuel passages to provide a device and system capable of operating at more than one power level.