Abstract:
A process for the manufacture of dialkyl furan-2,5-dicarboxylate (DAFD) vapor composition by feeding furan-2,5-dicarboxylic acid (“FDCA”) to an esterification reactor and in the presence of an alcohol compound such as methanol, conducting an esterification reaction to form an esterification vapor containing DAFD, unreacted alcohol compound, 5-(alkoxycarbonyl)furan-2-carboxylic acid (ACFC), and water, and continuously passing the esterification vapor through an ACFC condensing zone, that can be integral with the esterification reactor, in which at least a portion of the ACFC in the esterification vapor is converted to a liquid phase condensate, and continuously discharging the esterification vapor from the ACFC condensing zone as a DAFD vapor. There is also a DAFD vapor composition containing DAFD, water, unreacted alcohol, and by-products.
Abstract:
Disclosed is an optimized process and apparatus for more efficiently and economically carrying out the liquid-phase oxidation of an oxidizable compound. Such liquid-phase oxidation is carried out in a bubble column reactor that provides for a highly efficient reaction at relatively low temperatures. When the oxidized compound is para-xylene and the product from the oxidation reaction is crude terephthalic acid (CTA), such CTA product can be purified and separated by more economical techniques than could be employed if the CTA were formed by a conventional high-temperature oxidation process.
Abstract:
Disclosed is an optimized process and apparatus for more efficiently and economically carrying out the liquid-phase oxidation of an oxidizable compound. Such liquid-phase oxidation is carried out in a bubble column reactor that provides for a highly efficient reaction at relatively low temperatures. When the oxidized compound is para-xylene and the product from the oxidation reaction is crude terephthalic acid (CTA), such CTA product can be purified and separated by more economical techniques than could be employed if the CTA were formed by a conventional high-temperature oxidation process.
Abstract:
Disclosed is an oxidation process to produce a crude carboxylic acid product carboxylic acid product. The process comprises oxidizing a feed stream comprising at least one oxidizable compound to generate a crude carboxylic acid slurry comprising furan-2,5-dicarboxylic acid (FDCA) and compositions thereof. Also disclosed is a process to produce a dry purified carboxylic acid product by utilizing various purification methods on the crude carboxylic acid.
Abstract:
Disclosed is an oxidation process to produce a crude carboxylic acid product carboxylic acid product. The process comprises oxidizing a feed stream comprising at least one oxidizable compound to generate a crude carboxylic acid slurry comprising furan-2,5-dicarboxylic acid (FDCA) and compositions thereof. Also disclosed is a process to produce a dry purified carboxylic acid product by utilizing various purification methods on the crude carboxylic acid.
Abstract:
Disclosed is an optimized process and apparatus for more efficiently and economically carrying out the liquid-phase oxidation of an oxidizable compound. Such liquid-phase oxidation is carried out in a bubble column reactor that provides for a highly efficient reaction at relatively low temperatures. When the oxidized compound is para-xylene and the product from the oxidation reaction is crude terephthalic acid (CTA), such CTA product can be purified and separated by more economical techniques than could be employed if the CTA were formed by a conventional high-temperature oxidation process.
Abstract:
Disclosed is an optimized process and apparatus for more efficiently and economically carrying out the liquid-phase oxidation of an oxidizable compound. Such liquid-phase oxidation is carried out in a bubble column reactor that provides for a highly efficient reaction at relatively low temperatures. When the oxidized compound is para-xylene and the product from the oxidation reaction is crude terephthalic acid (CTA), such CTA product can be purified and separated by more economical techniques than could be employed if the CTA were formed by a conventional high-temperature oxidation process.
Abstract:
Disclosed is an optimized process and apparatus for more efficiently and economically carrying out the liquid-phase oxidation of an oxidizable compound. Such liquid-phase oxidation is carried out in a bubble column reactor that provides for a highly efficient reaction at relatively low temperatures. When the oxidized compound is para-xylene and the product from the oxidation reaction is crude terephthalic acid (CTA), such CTA product can be purified and separated by more economical techniques than could be employed if the CTA were formed by a conventional high-temperature oxidation process.
Abstract:
Disclosed is an optimized process and apparatus for more efficiently and economically carrying out the liquid-phase oxidation of an oxidizable compound. Such liquid-phase oxidation is carried out in a bubble column reactor that provides for a highly efficient reaction at relatively low temperatures. When the oxidized compound is para-xylene and the product from the oxidation reaction is crude terephthalic acid (CTA), such CTA product can be purified and separated by more economical techniques than could be employed if the CTA were formed by a conventional high-temperature oxidation process.
Abstract:
Disclosed is an optimized process and apparatus for more efficiently and economically carrying out the liquid-phase oxidation of an oxidizable compound. Such liquid-phase oxidation is carried out in a bubble column reactor that provides for a highly efficient reaction at relatively low temperatures. When the oxidized compound is para-xylene and the product from the oxidation reaction is crude terephthalic acid (CTA), such CTA product can be purified and separated by more economical techniques than could be employed if the CTA were formed by a conventional high-temperature oxidation process.