Abstract:
The present disclosure relates to converting equilibrium-limited reactions. Various embodiments may include methods and apparatus for such reactions, such as a method for converting equilibrium-limited reactions comprising: delivering a catalyst material to a reaction zone of a reactor; delivering starting materials into the reaction zone; reacting the materials to form a product; introducing a sorbent into the reactor; taking up the products with the sorbent; and collecting the sorbent once it is loaded with products in a collection zone of the reactor. In some embodiment, the reaction zone is separated from the collection zone in the reactor.
Abstract:
Herein disclosed is a method of producing value-added product from light gases, the method comprising: (a) providing light gases comprising at least one compound selected from the group consisting of C1-C6 compounds and combinations thereof; (b) intimately mixing the light gases with a liquid carrier in a high shear device to form a dispersion of gas in the liquid carrier, wherein the dispersion is supersaturated with the light gases and comprises gas bubbles at least some of which have a mean diameter of less than or equal to about 5 micron(s); (c) allowing the value-added product to form and utilizing vacuum to extract unreacted light gases from the liquid carrier; (d) extracting the value-added product; wherein the value-added product comprises at least one component selected from the group consisting of higher hydrocarbons, hydrogen, olefins, alcohols, aldehydes, and ketones. A system for producing value-added product from light gases is also disclosed.
Abstract:
The present disclosure provides a gas reaction device. Reactions are happened on a fixed bed and/or a slurry bed in four reaction states. Thus, by using the four reaction states, reactions are thoroughly completed with the same catalyst. Or, different reactions are completed with different catalysts for different purposes.
Abstract:
The invention relates to a mixing reactor for mixing a liquid and pulverous solid, clarification the solution that is formed and discharging the clarified solution from the mixing reactor, in the lower section of which a fluidized bed is formed. The invention also relates to a method for mixing a liquid and pulverous solid into each other in a fluidized bed, for clarification the solution that is formed and for discharging the clarified solution from the mixing reactor.
Abstract:
Disclosed is an optimized process and apparatus for more efficiently and economically carrying out the liquid-phase oxidation of an oxidizable compound. Such liquid-phase oxidation is carried out in a bubble column reactor that provides for a highly efficient reaction at relatively low temperatures. When the oxidized compound is para-xylene and the product from the oxidation reaction is crude terephthalic acid (CTA), such CTA product can be purified and separated by more economical techniques than could be employed if the CTA were formed by a conventional high-temperature oxidation process.
Abstract:
Disclosed is an optimized process and apparatus for more efficiently and economically carrying out the liquid-phase oxidation of an oxidizable compound. Such liquid-phase oxidation is carried out in a bubble column reactor that provides for a highly efficient reaction at relatively low temperatures. When the oxidized compound is para-xylene and the product from the oxidation reaction is crude terephthalic acid (CTA), such CTA product can be purified and separated by more economical techniques than could be employed if the CTA were formed by a conventional high-temperature oxidation process.
Abstract:
The invention concerns a method for making an aqueous solution of hydrogen peroxide. More particularly, it concerns a method for making hydrogen peroxide directly from hydrogen and oxygen, finely dispersed in an aqueous acid medium comprising a catalyst and at least a surfactant. The invention also concerns a device for implementing said method.
Abstract:
The invention concerns a supported metal catalyst based on at least one metal selected in the group M consisting of palladium, platinum, ruthenium, rhodium, iridium, holmium, osmium and gold, used for directly making hydrogen peroxide from hydrogen and oxygen. The invention also concerns a method for making said catalyst comprising successively an impregnating step with a solution based on one or several salt(s) of at least one metal of group M on a support, and a reduction step characterised in that at the end of the reduction step, the catalyst is treated with an aqueous acid solution comprising bromine and bromide ions. The catalyst is characterised by metal or crystallised metal aggregates with size ranging between 0.1 and 20 microns and preferably between 0.1 and 10 microns. The supported bimetal catalyst is preferred, for example Pd—Pt, Au—Pt, Pd—Ho and Pd—Au.
Abstract:
The invention relates to a reactor for carrying out photocatalysed reactions in liquid or gaseous reaction media, consisting of a reactor vessel with a solid photocatalyst (PC), feed lines and take-off lines, mixing means, and a means of supplying electromagnetic radiation, containing microradiators which absorb the electromagnetic radiation and, with a time delay, emit light which excites the photocatalyst, and also to a process for carrying out photocatalytic reactions, in which solid PC are suspended in the liquid or gaseous reaction medium and are activated by means of microradiators which are charged up at an electromagnetic radiation source and which emit this energy with a time delay.
Abstract:
A solid catalyst used in, for example, production of a perfluoroalkyl iodide telomer is effectively and continuously recovered and the recovered catalyst is continuously recycled to the reactor for reuse. A slurry containing a reaction product and the catalyst is drawn from the reaction system, and the catalyst in the drawn slurry is classified by means of a hydrocyclone, whereby a high-concentration slurry whose catalyst concentration is higher than that of the drawn slurry and a low-concentration slurry whose catalyst concentration is lower than that of the drawn slurry are obtained, and the high-concentration slurry is recycled to the reaction system.