Abstract:
A power conversion apparatus is provided. The power conversion apparatus includes a transformer, a synchronous rectification (SR) transistor and an SR control circuit. A first terminal of a primary side of the transformer receives an input voltage. A first terminal of a secondary side of the transformer provides an output voltage to a load. A first drain/source terminal of the SR transistor is coupled to a second terminal of the secondary side of the transformer. A second drain/source terminal of the SR transistor is coupled to a first ground terminal. A gate terminal of the SR transistor receives a control signal. The SR control circuit receives a signal of the first drain/source terminal of the SR transistor to determine statuses of the load and generate the control signal. When the load is a light load, the SR control circuit enters a power-saving mode and turns off the SR transistor.
Abstract:
A power conversion apparatus including a flyback power conversion circuit, a control chip and a detection auxiliary circuit is provided. The flyback power conversion circuit receives and converts an input voltage into a DC output voltage. The control chip generates a PWM signal in response to a power supplying requirement to control the operation of the flyback power conversion circuit, wherein the control chip has a single multi-function detection pin. The detection auxiliary circuit assists the control chip to obtain a first detection voltage via the multi-function detection pin, such that the control chip performs a detection of an over temperature protection (OTP) and a detection of an over voltage protection (OVP) synchronously according to the first detection voltage. The first detection voltage is related to the DC output voltage or a thermal voltage of an environment temperature.
Abstract:
A power conversion apparatus and an over power protection method thereof are provided. A number of times a sensing voltage exceeding a reference voltage is counted, so as to determine whether to disable a power switch in the power conversion apparatus according to the number of times the sensing voltage exceeding the reference voltage, in which the sensing voltage corresponds to a current flowing through the power switch on a resistor.
Abstract:
A power conversion apparatus and an over power protection method thereof are provided. A number of times a detection voltage being greater than a first reference voltage and a number of times the detection voltage being greater than a second reference voltage are counted, so as to obtain a first count value and a second count value, in which the detection voltage is a voltage on a resistor in response to a current flowing through a power switch. Stop switching the power switch when the first count value is greater than or equal to a first threshold value or when the second count value is greater than or equal to a second threshold value.
Abstract:
A power conversion apparatus and an over power protection method thereof are provided. A number of times a sensing voltage exceeding a reference voltage is counted, so as to determine whether to disable a power switch in the power conversion apparatus according to the number of times the sensing voltage exceeding the reference voltage, in which the sensing voltage corresponds to a current flowing through the power switch on a resistor.
Abstract:
A light emitting diode (LED) driving apparatus and an LED backlight system using the same are provided. The backlight control circuit suitable for driving an LED string includes a complex function pin, a driving circuit and a backlight control circuit. The backlight control circuit includes a control current generating unit, a first current comparing unit and a second current comparing unit. The control current generating unit receives a dimming control signal and an enable control signal from the complex function pin to generate a control current accordingly. The first and the second current comparing units are respectively configured to compare the control current with first and second predetermined currents to respectively generate a first and a second control signals. The driving circuit determines to be turned on or off according to the second control signal, and further adjusts a luminance of the LED string according to the first control signal.
Abstract:
A light-emitting-diode (LED) driving apparatus including an AC-DC power conversion stage, a balance circuit and a pulse-width-modulation (PWM) control unit is provided. In the present invention, the LED driving apparatus balances currents flowing through all LED strings by using the balance circuit such that a purpose of current matching is achieved accordingly. In addition, the LED driving apparatus may control the PWM control unit according to an equation between an independent DC output voltage generated by the AC-DC power conversion stage and a control voltage provided by the balance circuit without adopting any boost converter so as to indirectly change a DC output voltage used for directly driving all LED strings and generated by the AC-DC power conversion stage. In this way, the purpose of low cost and high efficiency can be achieved accordingly.
Abstract:
An AC/DC converting circuit and a starting method thereof are provided. An AC detection or a rectified AC voltage detection is disabled when the AC voltage or the rectified AC voltage not up to a start-up voltage is detected, so as to shorten a recovery time of a voltage of a power supply terminal of an AC/DC power conversion controller, and further shorten a starting time of the AC/DC converting circuit.
Abstract:
A power conversion apparatus and a synchronous rectification controller thereof are provided. At least one of a differentiation operation and an integration operation is performed on a drain voltage signal of a synchronous rectification transistor. According to at least one of a differential signal obtained by performing the differential operation and an integral signal obtained by performing the integral operation, it is determined whether to turn on the synchronous rectification transistor at the next time when the drain voltage signal is less than or equal to a turn-on threshold voltage.
Abstract:
A power conversion apparatus and a synchronous rectification (SR) controller thereof are provided. An open-loop control circuit outputs a clamp voltage as a driving voltage when a drain voltage of a synchronous rectification transistor rises to a second voltage, so as to quickly pull down the driving voltage and maintain the driving voltage at a clamp voltage. Therefore, a second control circuit may quickly turn off the synchronous rectification transistor when the drain voltage is greater than a third voltage.