Abstract:
System and method for generating multiprimary signals for use in display devices. A preferred embodiment comprises converting a color signal into an intermediate color space representation of the color signal, converting one of a plurality of multiprimary signals that is a representation of the color signal into an intermediate color space representation of the multiprimary signal, computing a quality measure of the intermediate color space representations of the color signal and the multiprimary signal, repeating the converting of a multiprimary signal and the computing for the remainder of the plurality of multiprimary signals, and selecting a multiprimary signal that optimizes the quality measure. The quality measure can consider requirements such as those minimizing a distance between the color signal and the multiprimary signal, an energy change as well as a phase change between the multiprimary signal and its neighbors, all leading to improved image quality.
Abstract:
An improved color processing method for use in imaging systems transforms the input color image components into an output set of color image components, at least one of which is transformed using a non-linear transformation function.
Abstract:
The present disclosure relates to systems and processes for automatically adjusting the white point of displayed images to account for changes in ambient light. In one embodiment, a display system includes a display device having sensors for recording the red (R), green (G) and blue (B) values for ambient light and measuring the intensity of such light. The sensors feed these values into a processor, which calculates R, G, B gain values to be applied to the video input R, G, B values. In this manner, the display device can account for changes in ambient light to adjust the perceived white point accordingly. Related methods for automatically adjusting the white point of a perceived image are also described.
Abstract:
A system comprises an eyewear device that includes a frame, a temple connected to a lateral side of the frame, a fingerprint sensor, and a sensing circuit. The fingerprint sensor includes an input surface to receive input of a finger skin surface. The sensing circuit is configured to track a pattern of fingerprint ridges of the finger skin surface on the input surface. Execution of programming by a processor configures the system to perform functions to track, via the sensing circuit, the pattern of fingerprint ridges of the finger skin surface on the input surface; generate a fingerprint image having the tracked pattern of fingerprint ridges; extract fingerprint features from the fingerprint image; and authorize the user to utilize the eyewear device based on the extracted fingerprint features.
Abstract:
A system comprises an eyewear device that includes a frame, a temple connected to a lateral side of the frame, a fingerprint sensor, and a sensing circuit. The fingerprint sensor includes an input surface to receive input of a finger skin surface. The sensing circuit is configured to track a pattern of fingerprint ridges of the finger skin surface on the input surface. Execution of programming by a processor configures the system to perform functions to track, via the sensing circuit, the pattern of fingerprint ridges of the finger skin surface on the input surface; generate a fingerprint image having the tracked pattern of fingerprint ridges; extract fingerprint features from the fingerprint image; and authorize the user to utilize the eyewear device based on the extracted fingerprint features.
Abstract:
A personal mobility vehicle 1 includes one or more automation components, a vault 2, and locking means 3 adapted to lock the vault 2. The automation components include at least one of a motor controller, computing processors, or a battery to power other automation components, or combination thereof. The functional components are the components that either display various information related to navigation of the vehicle, or receive inputs to be processed by the computing processor or microcontroller, or receives triggers from the motor controller or the computing processor regarding the functioning of the functional components, or combination thereof. Inside the vault 2, the automation components are placed, such that the automation components are functionally connected to other functional components of the vehicle 1. The embodiment helps to safeguard the automation components, and keep them protected, such that authorized personnel have access to the automation components inside the vault. These automation components are critical to functioning of the vehicle 1.
Abstract:
A system 1 for controlling a powered personal mobility vehicle 8. The system includes an input module 2, a processing unit 4, and a motor controller 7. The input module 2 receives manual triggers 3 regarding the movement of the personal mobility vehicle 8. The processing unit 4 processes a location information 5 or a distance information 6 at a given point in time, and further, either generate an automatic trigger 19, and disable or curtail the functioning of the input module 2, or enable the functioning of the input module 2. The location information 5 is defined as a location of an obstacle co-located in an environment in which the personal mobility vehicle 8 is placed or being driven, and the distance information 6 is defined as the distance of the obstacle from the vehicle 8 at a given point in time. The motor controller 7 receives and processes manual triggers 3 or automatic triggers 19 and controls movement of the personal mobility vehicle 8.
Abstract:
A system comprises an eyewear device that includes a frame, a temple connected to a lateral side of the frame, a fingerprint sensor, and a sensing circuit. The fingerprint sensor includes an input surface to receive input of a finger skin surface. The sensing circuit is configured to track a pattern of fingerprint ridges of the finger skin surface on the input surface. Execution of programming by a processor configures the system to perform functions to track, via the sensing circuit, the pattern of fingerprint ridges of the finger skin surface on the input surface; generate a fingerprint image having the tracked pattern of fingerprint ridges; extract fingerprint features from the fingerprint image; and authorize the user to utilize the eyewear device based on the extracted fingerprint features.
Abstract:
Eyewear including a support structure defining a region for receiving a head of a user. The support structure supports optical elements, electronic components, and a use detector. The use detector is coupled to the electronic components and is positioned to identify when the head of the user is within the region defined by the support structure. The electronic components monitor the use detector and transition from a first mode of operation to a second mode of operation when the use detector senses the head of the user in the region.
Abstract:
In an example, the eyewear includes an optical element, electronic components, and a support structure configured to support the optical element and the electronic components. The support structure defines a region for receiving at least a portion of a head of a user. The eyewear also includes a biometric sensor coupled to the electronic components and supported by the support structure. The biometric sensor is attached to the support structure and positioned to detect, in the region, a biometric signal representative of a biometric of the user for processing by the electronic components.