Abstract:
The present invention relates to a process for preparation of erlotinib of Formula I or its pharmaceutically acceptable salt thereof. The present invention also relates to process for the preparation of erlotinib trifluoroacetate. The present invention also relates to a nove-ICrystalline form of erlotinib trifluoroacetate designated as Form E and process for its preparation. The present invention further relates to process for the preparation of erlotinib hydrochloride from erlotinib trifluoroacetate.
Abstract:
The present invention provides amorphous and crystalline forms of acid addition salts of sorafenib, pharmaceutical compositions comprising them and their use for the treatment of cancer. The present invention also provides processes for the preparation of acid addition salts of sorafenib.
Abstract:
Disclosed herein is a process for producing bisphosphonic acids and salts thereof. The process comprising reacting a carboxylic acid of Formula [I] with phosphorous acid and halophosphorus compound in the presence of a solvent selected from aliphatic hydrocarbon or water miscible cyclic ether. Further, the present invention also provides novel forms of bisphosphonic acids and process for preparation thereof.
Abstract:
Disclosed is a process for producing pure form of 2-methyl-4-(4-methyl-1-piperazinyl)-10H-thieno[2,3-b][1,5] benzodiazepine. The process comprises of reacting 2-(2-aminoanilino)-5-methylthiophene-3-carbonitrile with N-methyl piperazine in conjunction with N-methylpiperazine acid salt, to produce 2-methyl-4-(4-methyl-1-piperazinyl)-10H-thieno[2,3-b][1,5] benzodiazepine. Also disclosed is a process for obtaining the Polymorphic Form I of 2-methyl-4-(4-methyl-1-piperazinyl)-10H-thieno[2,3-b][1,5] benzodiazepine by crystallizing the crude 2-methyl-4-(4-methyl-1-piperazinyl)-10H-thieno[2,3-b][1,5] benzodiazepine in a mixture of solvents.
Abstract:
A novel process of lactonizaton in the preparation of statins (e.g., the HMG--CoA reductase inhibitors lovastatin and simvastatin) employs very mild reaction conditions. The improved process comprises dissolving the open ring hydroxy acid form of the statins in an organic solvent by heating at a temperature, which ranges from ambient to reflux of the solvent, under anhydrous conditions to produce a solution, treating the solution with a mild catalyst at a temperature from about ambient to 50.degree. C., and adding water to the solution to cause the statins in lactone form to crystalize from the reaction mixture. The mild catalyst used in the reaction is a salt of an organic base with an organic or inorganic acid, such as pyridine hydrobromide, pyridine hydrochloride, or pyridinium, p-toluene sulfonate. The organic solvent comprises a lower alkanol, a non-alcoholic polar solvent, or a mixture of the two.
Abstract:
A process for preparing simvastatin from lovastatin or mevinolinic acid in salt form comprises treating either starting material with cyclopropyl or butyl amine, the pyranone ring thereby being opened when lovastatin is the starting material, adding a methyl group to the 2-methylbutyrate side chain, and thereafter closing the open pyranone ring to produce simvastatin. The process is performed without protecting and deprotecting the two hydroxy groups of the open pyranone ring. In a preferred embodiment, the starting material is treated with cyclopropyl amine which produces simvastatin via the novel intermediate lovastatin cyclopropyl amide.