Abstract:
Implementations of the present disclosure relate to a method of operating a coker unit comprising the steps of: collecting a coker-furnace feed stream; introducing the coker-furnace feed-stream into a coker furnace for producing a coker-drum feed stream; and introducing a hydrogen-donor gas into either or both of the coker-furnace feed stream or the coker-drum feed stream.
Abstract:
A Steam-Assisted Gravity Drainage (SAGD) method for recovering hydrocarbons from a reservoir can include generating steam and CO2 from feedwater, fuel and oxygen; transferring a steam-CO2 mixture comprising at least a portion of the steam and at least a portion of the CO2, to a proximate SAGD injection well; injecting the steam-CO2 mixture into the SAGD injection well; obtaining produced fluids from a SAGD production well underlying the SAGD injection well; transferring the produced fluids for separation proximate to the SAGD production well; separating the produced fluids into a produced gas and a produced emulsion; transferring the produced emulsion for separation proximate to the SAGD production well; separating the produced emulsion to obtain a produced hydrocarbon-containing component and produced water; supplying at least a portion of the produced water as at least part of the feedwater; and supplying the produced hydrocarbon-containing component to a central processing facility.
Abstract:
Partial upgrading processes can include thermal treatment combined with solvent deasphalting, and recycling of certain streams, to process bitumen feedstocks and produce a bitumen product. The thermal treatment can be done so that the feedstock is in liquid phase at conditions below incipient coking conditions. Solvent deasphalting can be done before or after thermal treatment depending on the configuration of the process. Subjecting the bitumen feedstock to a partial upgrading can facilitate viscosity reduction of the bitumen feedstock and can facilitate avoiding the need for the addition of an external source of hydrogen.
Abstract:
A paraffinic spray oil and a method of using the spray oil for controlling turfgrass pests is disclosed. The spray oil comprises paraffinic oil and a quick break emulsifier, which is formulated as an oil-in-water (O/W) emulsion for use. The paraffinic oil and emulsifier are present in a weight ratio ranging from about 95:5 to about 99.95:0.05, and preferably from about 98.5:1.5 to about 99.9:0.1. When applied to turfgrass, the O/W emulsion quickly releases the oil phase upon application to the turfgrass to contact pests thereon. When provided at sufficient paraffinic oil dosages, generally at least about 0.5 gal oil/acre and preferably in the range of about 0.5 gal/acre to about 60 gal/acre, the spray oil is effective in controlling a variety of turfgrass pests, particularly insect and fungal pests, with little or no phytotoxic effects. Further, use of the spray oil as indicated for controlling turfgrass pests also enhances the growth of turfgrass.
Abstract:
Oil-in-water fungicidal formulations are prepared having pigment dispersed therein, the pigment being stable within the oil-in-water emulsion as a result of the addition of suitable silicone surfactants and suitable emulsifiers. The formulations can be prepared either as a 2-pack formulation or as a single formulation. In the case of the single formulation polyethylene glycol is also added. In either case, the formulations show a synergistic effect through the addition of the pigment, the resulting formulations having an increased efficacy. Further, the formulations show a synergistic effect when mixed with conventional chemical fungicides, both being added in reduced amounts compared to recommended rates.
Abstract:
Methods are described for the production of a hydrocarbon product and selective rejection of low quality hydrocarbons from a bitumen-containing material, where product quality, production yield, processing input requirements, and environmental benefits are assessed for selecting a candidate method for deployment. The methods facilitate selection and deployment of sustainable hydrocarbon production operations rather than focusing on maximizing volumetric yield of hydrocarbons.
Abstract:
Techniques are described that relate to enhancing flocculation and dewatering of thick fine tailings, for example by reducing process oscillations. One example method includes dispersing a flocculant into thick fine tailings having a turbulent flow regime to produce turbulent flocculating tailings; subjecting the turbulent flocculating tailings to shear to build up flocs and increase yield stress, to produce a flocculated material having a non-turbulent flow regime; and shear conditioning the flocculated material to decrease the yield stress and produce conditioned flocculated tailings within a water release zone; and dewatering the conditioned flocculated tailings, for example by employing sub-aerial deposition. The thick fine tailings may have a Bingham Reynolds Number of at least 40,000 upon flocculant addition. Inhibiting process oscillations may include providing turbulent tailings feed, configuring a downstream pipeline assembly to reduce backpressure fluctuations and/or reducing air content in the flocculant solution, for example.
Abstract:
This disclosure features methods for the use of combinations including a paraffinic oil and a pigment for increasing resistance of plants to one or more abiotic stresses.
Abstract:
A Steam-Assisted Gravity Drainage (SAGD) method for recovering hydrocarbons from a reservoir can include generating steam and CO2 from feedwater, fuel and oxygen; transferring a steam-CO2 mixture comprising at least a portion of the steam and at least a portion of the CO2, to a proximate SAGD injection well; injecting the steam-CO2 mixture into the SAGD injection well; obtaining produced fluids from a SAGD production well underlying the SAGD injection well; transferring the produced fluids for separation proximate to the SAGD production well; separating the produced fluids into a produced gas and a produced emulsion; transferring the produced emulsion for separation proximate to the SAGD production well; separating the produced emulsion to obtain a produced hydrocarbon-containing component and produced water; supplying at least a portion of the produced water as at least part of the feedwater; and supplying the produced hydrocarbon-containing component to a central processing facility.
Abstract:
A pump has a pump barrel formed from a larger diameter section and a smaller diameter section. Each section has a biased piston moveable within the section and the pistons are connected together to form a variable volume chamber between the pistons. As the connected pistons move toward the larger diameter section, a volume of fluid is moved through an inlet valve into the variable volume chamber of increasing volume. When the pistons are moved toward the smaller diameter section, a differential volume of fluid is discharged from the variable volume chamber of decreasing volume through a discharge valve into a discharge conduit. The pistons are actuated to move within the pump barrel by application and release of pressure at a remote end of the discharge conduit.