Abstract:
A triarylamine-based compound of formula 1, a method of preparing the same, and an organic light emitting device including the triarylamine-based compound of formula 1: where Ar1 through Ar4 are independently a substituted or unsubstituted C6-C30 aryl group or a substituted or unsubstituted C2-C30 heterocyclic group; R is a halogen atom, a cyano group, a substituted or unsubstituted C1-C30 alkyl group; n is an integer of 1 through 3; and m is an integer of 1 through 3. The triarylamine-based compound of formula 1 has excellent electrical properties and a great charge transporting capability. An organic light emitting device including an organic layer formed of the triarylamine-based compound has high efficiency, low operating voltage, great luminance, and long lifetime.
Abstract:
An organic electroluminescent device includes: a switching element and a driving element connected to each other on a substrate including a pixel region; a planarization layer on the switching element and the driving element, the planarization layer having a substantially flat top surface; a cathode on the planarization layer, the cathode connected to the driving element; an emitting layer on the cathode; and an anode on the emitting layer.
Abstract:
An organic electroluminescent device including a switching element and a driving element connected to the switching element on a substrate including a pixel region, a cathode connected to the driving element, in which the cathode includes molybdenum (Mo), an emitting layer on the cathode, and an anode on the emitting layer.
Abstract:
An organic electroluminescent device includes a switching element and a driving element connected to the switching element on a substrate in a pixel region, an overcoat layer on the switching element and the driving element, a first contact layer on the overcoat layer, the first contact layer being made of one of molybdenum and indium tin oxide, a cathode on the first contact layer, the cathode connected to the driving element through the first contact layer, an emitting layer on the cathode, and an anode on the emitting layer.
Abstract:
An organic electroluminescent device includes: a switching element and a driving element connected to each other on a substrate including a pixel region; a planarization layer on the switching element and the driving element, the planarization layer having a substantially flat top surface; a cathode on the planarization layer, the cathode connected to the driving element; an emitting layer on the cathode; and an anode on the emitting layer.
Abstract:
The present invention relates to an organic electroluminescent (OEL) compound that comprises at least one fluorene derivative and at least one carbazole derivative. The compound has good electrical properties, light emitting properties and charge transport ability, and thus is suitable as a host material suitable for fluorescent and phosphorescent dopants of all colors including red, green, blue, white, etc., and as a charge transport material. An OEL display device that uses an organic layer that includes the OEL compound has a high efficiency, a low voltage, a high luminance, and a long lifespan because it has superior current density.
Abstract:
An organic electroluminescent device including a switching element and a driving element connected to the switching element on a substrate including a pixel region, a cathode connected to the driving element, in which the cathode includes molybdenum (Mo), an emitting layer on the cathode, and an anode on the emitting layer.
Abstract:
A triarylamine-based compound of formula 1, a method of preparing the same, and an organic light emitting device including the triarylamine-based compound of formula 1: where Ar1 through Ar4 are independently a substituted or unsubstituted C6-C30 aryl group or a substituted or unsubstituted C2-C30 heterocyclic group; R is a halogen atom, a cyano group, a substituted or unsubstituted C1-C30 alkyl group; n is an integer of 1 through 3; and m is an integer of 1 through 3. The triarylamine-based compound of formula 1 has excellent electrical properties and a great charge transporting capability. An organic light emitting device including an organic layer formed of the triarylamine-based compound has high efficiency, low operating voltage, great luminance, and long lifetime.
Abstract:
A triazine-based compound having three biphenyl groups, represented by Structure 1, below, wherein R1 through R18 are each independently one of: hydrogen, a substituted C1-30 alkyl group, an unsubstituted C1-30 alkyl group, a substituted C6-50 aryl group, an unsubstituted C6-50 aryl group, a substituted C4-50 heteroaryl group, and an unsubstituted C4-50 heteroaryl group, and at least one of R1, R2, R7, R8, R13 and R14 is one of: a substituted C1-30 alkyl group, an unsubstituted C1-30 alkyl group, a substituted C6-50 aryl group, an unsubstituted C6-50 aryl group, a substituted C4-50 heteroaryl group, and an unsubstituted C4-50 heteroaryl group.
Abstract translation:由以下结构1表示的具有三个联苯基的三嗪基化合物,其中R 1至R 18各自独立地为氢,取代的C 1-30个烷基,未取代的C 1〜30个烷基,取代的C 6〜6-50芳基,未取代的C 6 -50个芳基,取代的C 4-50杂芳基和未取代的C 1-4-50杂芳基,以及至少一个R SUB R 1,R 2,R 7,R 8,R 13和R SUB > 14 sub>是以下之一:取代的C 1-130烷基,未取代的C 1-130烷基,取代的C 6〜 50个芳基,未取代的C 6〜6-50芳基,取代的C 4-50杂芳基和未取代的C 4-50 杂芳基。
Abstract:
A difluoropyridine-based compound includes at least one difluoropyridine group in its molecule. The difluoropyridine-based compound may be used as an electron injection material, an electron transport material, or a hole blocking material in full-color fluorescent or phosphorescent devices. The difluoropyridine-based compound has good electrical characteristics and a high charge transport capability. The difluoropyridine-based compound may be used to produce an organic electroluminescent device with high efficiency, low voltage, improved brightness, and a long life expectancy.