Abstract:
A counter machine includes a display, a first connecting member, a support, and a second connecting member. The first connecting member is secured to the display and includes a first block. The second connecting member is engaged with the first connecting member and includes a second block. The first connecting member is rotatable relative to the second connecting member. When the first block is blocked by the second block, the first connecting member is blocked from rotating relative to the second connecting member.
Abstract:
A method for testing hard disks under an extensible firmware interface (EFI) provides a device tree of hard disks. Nodes of the device tree represent block devices or file systems of the hard disks. Devices paths and handles corresponding to each of the device paths are obtained from the device tree. Parent controller handles of each of the device paths are obtained. If there are parent controller handles the same as the obtained handles, the parent controller handles the same as the obtained handles are deleted. The computer determines that a number of the hard disks is equal to a number of the device paths corresponding to the remained parent controller handles. Nodes information of each of the device paths corresponding to the remained parent controller handles are determined as hard disk information of each of the hard disks.
Abstract:
A parallel burning system and method is for burning chips of various different bus types in parallel. A computer compiles configuration information according to corresponding connection relations between the chips and the micro controller units, and transmits the configuration information, burning command and burning data to a master micro controller unit of the micro controller units. The master micro controller unit distributes the burning data to slave micro controller units of the micro controller units based on the analyzed configuration information, and controls each slave micro controller unit to activate its burning operation. Then, the slave micro controller units burn the burning data onto the chips connected thereto, and transmit the burning results back to the master micro controller unit after completion of the burning operations. Finally, the master micro controller unit transmits the burning results back to the computer after completion of all the burning operations.
Abstract:
The present invention concerns a method for controlling the operation of an automotive HVAC system. The HVAC system includes at least a refrigerant compressor and a refrigerant evaporator. The method includes the steps of calculating an ambient air enthalpy value; comparing the calculated ambient air enthalpy value to at least one predetermined enthalpy value; and selectively changing the operation of the refrigerant compressor based on the comparison.
Abstract:
A system is provided for extracting material changes in different design diagrams of a motherboard. The system includes: an extracting module for extracting a first raw BOM from a first circuit design diagram of the motherboard, and for extracting a second raw BOM from a second circuit design diagram of the motherboard, wherein the second circuit design diagram is partially identical to the first circuit design diagram; a converting module for converting the first raw BOM to a first standard BOM, and for converting the second raw BOM to a second standard BOM; a integrity checking module for determining whether data in the two standard BOMs are error free; and an comparing module for comparing the two standard BOMs to extract material changes. A related method is also disclosed.
Abstract:
A vehicular air conditioner includes a reversible heat pump having an air distribution fan positioned upstream of an indoor heat exchanger, a coolant heat exchanger positioned downstream of the indoor heat exchanger, and a damper arranged adjacent to a coolant heat exchanger. An engine cooling water system is connected to the coolant heat exchanger. A subassembly is used for positioning the damper in the fully opened condition such that the coolant heat exchanger is made an air intake flow path in addition to an air flow path of an air bypass space during a cooling operation. The engine cooling water system includes a coolant bypass valve connected between a primary side flow path and a secondary side flow path for engine cooling water to bypass the coolant heat exchanger. When the damper fully opens a full quantity of the engine cooling water flows to the secondary side flow path.
Abstract:
A system for controlling power sources of motherboards under test through networks includes a central server (1), a serial device server (3), a bus distributor (4), a number of power controllers (5), and a number of testing computers (8). The central server sets testing parameters, and transmits instructions regarding turning on or off power sources of the testing computers to the serial device server, in order to control the power sources of the testing computers. The serial device server converts the instructions into serial instructions, and generates corresponding serial signals. The bus distributor distributes an address for each power controller, receives the serial signals, and transmits the serial signals to corresponding power controllers. Each power controller turns on power sources of corresponding testing computers in which motherboards under test are installed according to the received serial signal. A related method is also disclosed.
Abstract:
An air conditioner for a vehicle having an engine that serves as a drive source for a compressor arranged in a rear part of the vehicle. The air conditioner includes the compressor, and further includes an air intake unit having an inside air intake, an outside air intake, an inside air/outside air changeover damper, and a blower disposed on a downstream side of the inside air/outside air changeover damper. The air conditioner includes an air conditioning unit into which air is introduced from the air intake unit, provided along an introduced air distribution path with a cooling apparatus heat exchanger fluidly connected to the compressor and configured to exchange heat between the introduced air and air outside the cabin interior, where the cooling apparatus heat exchanger is located in the rear part of the vehicle. The air conditioning unit also include an engine heat exchanger configured to exchange heat between the introduced air and an engine of the vehicle. The air conditioner further includes a duct configured to distribute air from the air conditioning unit to a front part of the vehicle, where the duct is provided with air outlets configured to discharge the air into the cabin interior.
Abstract:
An object of the invention is to provide a vehicular air conditioner using a heat pump that can improve heating ability by effective utilization of engine waste heat during a heating operation. The apparatus of the invention is a vehicular air conditioner using a heat pump with a compressor unit 20 equipped with a compressor 31, a throttling resistance 34 and a four way valve 33, connected by a refrigerant path 30 to an indoor heat exchanger 25 for effecting heat exchange between a refrigerant and vehicle cabin air, and an outdoor heat exchanger 21 installed in an engine compartment for effecting heat exchange between a refrigerant and outside air, and equipped with fan 22 for drawing in outside air, and which executes a cooling operation and a heating operation by switching a direction of flow of the refrigerant. During the heating operation, if the temperature of the engine compartment goes above a predetermined value, the fan 22 for drawing in outside air is reversed so that high temperature air is discharged from the engine compartment to the outside.