摘要:
The invention prevents the reduction of a display quality caused by a light leak current of a thin film transistor used in a display device. A lower metal layer is formed on a substrate, and a buffer film, a semiconductor layer, a gate insulation film, and a gate wiring are formed thereon in this order. An interlayer insulation film having contact holes is formed on the gate wiring. A source wiring and a drain wiring connected to a source and a drain of the semiconductor layer through the contact holes respectively extend onto the interlayer insulation film. The source wiring, the drain wiring, and the lower metal layer extend from contact hole side respectively to cover a region that does not extend over an end of the gate wiring in the width direction on or under the semiconductor layer and the gate wiring.
摘要:
A transverse field type liquid crystal display panel has multiple scan lines 12 and common wires 13 provided in parallel, multiple signal lines 17 provided in the direction crossing the scan lines 12, and common electrodes 14 and pixel electrodes 21 formed in the regions delimited by the multiple scan lines 12 and signal lines 17. At least part of the surface of an insulator laid over the scan lines 17 is covered by shield electrodes 22 constituted of a conductive material. Thanks to such structure, there can be provided a transverse field type—that is, an IPS mode or FFS mode—liquid crystal display panel that is equipped with a device for preventing burn-in due to the voltage that is applied to the scan lines.
摘要:
A liquid crystal display includes: a pair of substrates; a liquid crystal layer sandwiched between the pair of substrates; an insulating layer provided for a first substrate of the pair of substrates; an upper electrode provided for the first substrate; and a lower electrode provided for the first substrate. The upper electrode is formed on the surface of the insulating layer adjacent to the liquid crystal layer. The upper electrode includes a plurality of branches each having a slit therebetween. The insulating layer has irregularities.
摘要:
A liquid crystal display device includes a first substrate, a second substrate, and liquid crystal. The first substrate includes pixel electrodes, at least one common electrode, and a circuit wiring. The second substrate is opposed to the first substrate and includes a translucent conductive film. The liquid crystal is held between the first substrate and the second substrate. The circuit wiring is arranged outside a pixel area in which a plurality of pixels, which are formed of the pixel electrodes and the at least one common electrode, are arranged. The translucent conductive film is arranged on an opposite side of the second substrate to a side where the liquid crystal is present, and the translucent conductive film is opposed to the pixel electrodes and the at least one common electrode. The translucent conductive film is maintained at a predetermined electric potential. The translucent conductive film has an outer periphery that is located closer to a center of the second substrate than an outer periphery of the second substrate.
摘要:
An active matrix liquid crystal display device includes a pixel transistor, a wiring layer, a first insulating layer, a lower electrode layer, a second insulating layer, and an upper electrode layer. The wiring layer is connected to the pixel transistor. The first insulating layer is provided on the pixel transistor and the wiring layer. The lower electrode layer is provided on the first insulating layer and used as one of a common electrode layer and a pixel electrode layer. The second insulating layer is provided on the lower electrode layer. The upper electrode layer is provided on the second insulating layer and used as the other of the common electrode layer and the pixel electrode layer. The thickness t of the second insulating layer satisfies t [(∈0∈/W)×{(0.025381P)2/6}×k×ρON]/τON, where a display pixel has a substantially square shape and is composed of a plurality of sub pixels, a pitch at which the display pixels are arranged vertically and a pitch at which the display pixel are arranged horizontally are respectively P per 25.381 mm, the channel width of the pixel transistor is W, the on resistance per unit channel width of the pixel transistor is ρON, a period of time during which a gate line and drain line of the pixel transistor are simultaneously turned on is τON, a relative dielectric constant of the second insulating layer ∈, a vacuum dielectric constant is ∈0, a correction parameter is k. Liquid crystal molecules are driven by applying voltage between the upper electrode layer and the lower electrode layer.
摘要:
A liquid crystal display device having an upper electrode layer and a lower electrode layer formed on an identical substrate via an insulating layer includes slits formed on the upper electrode layer for applying voltage between the upper electrode layer and the lower electrode layer and driving liquid crystal molecules. Edge portions of the slits each include a first curved portion the tangential direction of which at the edge portions with respect to the rubbing direction falls within a range from 0° to +90° and a second curved portion the tangential direction of which at the edge portions with respect to the rubbing direction falls within the range from 0° to −90°. The direction toward an acute angle subtended by the long sides of the slits with respect to the rubbing direction is the positive direction. The second curved portion is smaller than the first curved portion.
摘要:
The invention is directed to reduction of a leak current of a TFT of a pixel caused by light from a backlight or external light to improve a display quality of a liquid crystal display device. The display device of the invention includes a plurality of pixels on a first substrate, where each of the pixels includes a gate line intersecting a semiconductor layer with a gate insulation film interposed therebetween, a drain line connected to a drain region through a first contact hole and covering an upper side of the semiconductor layer extending from an intersection, and a source electrode connected to a source region through a second contact hole and covering an upper side of the semiconductor layer extending from an intersection. The device further includes a light shield layer formed under the semiconductor layer with a buffer film interposed therebetween and shielding the semiconductor layer from light.
摘要:
A gate line is severed before the gate line reaches an Output portion of a vertical driving circuit of a display device, and the separated gate lines are connected by a metal wiring in an upper layer. The gate line is, for example, made of molybdenum, chrome, a molybdenum alloy or a chrome alloy, and the metal is made of aluminum or an aluminum alloy. Since the gate line is severed, the voltage stored in the gate line during the manufacturing process will not be discharged to the gate wiring of the thin film transistor, preventing the break down of the gate insulating layer of the thin film transistor.
摘要:
A first semiconductor layer that makes a capacitance coupling with a gate electrode of a thin film transistor through a gate insulating layer and a second semiconductor layer that makes a capacitance coupling with a storage capacitor line of a storage capacitor through the gate insulating layer are formed separately. Also, the first semiconductor layer and the second semiconductor layer are connected by a metal wiring. The gate electrode of the thin film transistor makes capacitance coupling with the first semiconductor layer and the storage capacitor line of the storage capacitor makes capacitance coupling with the second semiconductor layer independently. Voltage are induced in the first semiconductor layer and the second semiconductor layer independently. Since there will be no big discrepancy in voltage in the gate insulating layer, the dielectric break down and the leakage can be prevented.
摘要:
Peripheries of a contact 26 for connecting a polycrystalline silicon layer 20 to a pixel electrode 28 are cut by a laser to form a cut area 50. By this cut area 50, the polycrystalline silicon layer 20 around the contact 26 is also cut. In consequence, a TFT 24 is separated from the pixel electrode 28 and a supplemental capacitor electrode 32 to reliably accomplish darkening.