Abstract:
An electronic device with a display, a touch-sensitive surface, and one or more sensors to detect intensity of contacts with the touch-sensitive surface displays a first user interface of a first software application, detects an input on the touch-sensitive surface while displaying the first user interface, and, in response to detecting the input while displaying the first user interface, performs a first operation in accordance with a determination that the input satisfies intensity input criteria including that the input satisfies a first intensity threshold, and performs a second operation in accordance with a determination that the input satisfies pan criteria including that the input has moved across the touch-sensitive surface by at least a predefined distance.
Abstract:
An electronic device displays, on a display, a user interface. While displaying the user interface, the device detects an input on the touch-sensitive surface; and, in response to detecting the input while displaying the first user interface, and while detecting the input, in accordance with a determination that the input satisfies an activation intensity threshold, performs a first operation. The activation intensity threshold includes a first intensity threshold component that decreases from a first intensity value over time.
Abstract:
An electronic device displays a settings user interface that includes one or more control objects. The settings user interface is configured to adjust operations of the device that use one or more sensors that detect intensity of contacts with a touch-sensitive surface, and/or one or more tactile output generators. The device detects an input for a first control object of the one or more control objects; and, in accordance with the detected input for the first control object, changes the second intensity threshold and the second tactile output. The device provides a first tactile output in response to detecting that an intensity of a contact on a touch-sensitive surface increases above a first intensity threshold, and provides a second tactile output in response to detecting that an intensity of a contact on the touch-sensitive surface increases above a second intensity threshold, distinct from the first intensity threshold.
Abstract:
Disclosed herein are methods and systems for providing haptic output and audio output on computing devices using the same haptic device and methods for calibrating the same. To produce the haptic and audio output, the computing device receives a profile of a desired output waveform that is to be provided by the haptic device. Using the desired output waveform, an input waveform is generated. Once the input waveform that will produce the desired output waveform is generated, the input waveform may be calibrated to account for various structural components of the haptic device and may also be combined with an audio waveform. The input waveform is then provided to the haptic device.
Abstract:
A computer-implemented method for use in conjunction with a computing device with a touch screen display comprises: detecting one or more finger contacts with the touch screen display, applying one or more heuristics to the one or more finger contacts to determine a command for the device, and processing the command. The one or more heuristics comprise: a heuristic for determining that the one or more finger contacts correspond to a one-dimensional vertical screen scrolling command, a heuristic for determining that the one or more finger contacts correspond to a two-dimensional screen translation command, and a heuristic for determining that the one or more finger contacts correspond to a command to transition from displaying a respective item in a set of items to displaying a next item in the set of items.
Abstract:
A sequence of biometric data images is received, such as, for example, a sequence of fingerprint images, and a set of biometric data images is selected from the sequence of images. The set of images can include one or more segments of at least one image in the sequence of images. One or more portions of at least one image of biometric data in the set of images can be selected to be included in the unified image of biometric data. The unified image of biometric data can be constructed using the one or more portions of the at least one image of biometric data. If the unified image of biometric data is not complete, a user can be prompted for one or more additional images of biometric data.
Abstract:
An electronic device with a display, a touch-sensitive surface, and one or more sensors that detect intensities of contacts on the touch-sensitive surface displays, on the display, a user interface. While displaying the user interface, the electronic device detects an input that includes a contact on the touch-sensitive surface. In response to detecting the input while displaying the user interface, and while continuing to detect the input on the touch-sensitive surface: If an intensity of the contact satisfies an activation intensity threshold, the electronic device performs a first operation associated with the activation intensity threshold. The activation intensity threshold is determined based on whether or not prior inputs by the user on the touch-sensitive surface exceed a respective intensity threshold. If an intensity of the contact does not satisfy an activation intensity threshold, the electronic device forgoes performing the first operation associated with the activation intensity threshold.
Abstract:
A computing device with a touch-sensitive display displays a menu for a touch-sensitive keyboard, the menu including a plurality of keyboard settings. In response to a first input in the menu, adjusting a first setting of a plurality of keyboard settings for a first application. In response to a second input in the menu, adjusting a second setting of the plurality of keyboard settings for a second application distinct from the first application.
Abstract:
Systems and methods for calibrating a force input device are disclosed. The force input device includes a force-sensitive structure with a number of individual force sensors that compress or expand in response to input. The force input device measures an electrical property of the force sensors of the force-sensitive structure. After the force sensors are measured, the values obtained are adjusted based on a mechanical model of the response of the force sensitive structure. Upon receiving a force input event of high magnitude, the force input device recalibrates the mechanical model.
Abstract:
An electronic device displays a user interface of a first software application that includes one or more draggable objects and one or more control objects; and, detects a contact on a touch-sensitive surface at a first location while a focus selector is displayed over a first draggable object and a movement of the contact across the touch-sensitive surface to a second location that corresponds to a first control object. In accordance with a determination that the contact at the first location satisfies object selection criteria, the device moves the first draggable object to the first control object in accordance with the movement of the contact across the touch-sensitive surface to the first control object. In accordance with a determination that the contact at the second location satisfies first intensity criteria, the device performs a first predetermined operation that corresponds to activation of the first control object.