Abstract:
An electronic device with a display, a touch-sensitive surface, and one or more sensors to detect intensity of contacts with the touch-sensitive surface displays a first user interface of a first software application, detects an input on the touch-sensitive surface while displaying the first user interface, and, in response to detecting the input while displaying the first user interface, performs a first operation in accordance with a determination that the input satisfies intensity input criteria including that the input satisfies an intensity threshold during a first predefined time period, and performs a second operation in accordance with a determination that the input satisfies long press criteria including that the input remains below the intensity threshold during the first predefined time period.
Abstract:
A portable electronic device with a touch-sensitive display is disclosed. One aspect of the invention involves a computer-implemented method in which the portable electronic device: displays an application on the touch-sensitive display; and when the application is in a predefined mode, performs a predefined operation in response to each gesture of a set of multiple distinct gestures on the touch-sensitive display. Another aspect of the invention involves a computer-implemented method in which the portable electronic device: displays a first application; when the first application is in a first mode, performs a first operation upon detecting a first gesture on the touch-sensitive display; and performs the first operation upon detecting a second gesture on the touch-sensitive display, wherein the second gesture is different from the first gesture.
Abstract:
A force-sensitive input device for receiving user input. The input device can include a contact (e.g., touch) sensor and a plurality of force sensors. By combining the information from a multi-touch event with information from each of the plurality of force sensors, a contact centroid and a force centroid can be determined. Thereafter, by projecting a vector defining the force applied to the input device onto a vector defined between the contact centroid and an individual contact location, a magnitude of force applied at that contact location can be approximated.
Abstract:
Embodiments of the present disclosure provide a method and system for dynamically controlling a current that is applied to a light source of an optical encoder.
Abstract:
In one aspect, the present disclosure relates to a method including detecting force applied to a force sensing layer in a device and detecting touch contacts applied to a touch screen layer in a device. The method also includes determining if the location and/or amount of force detected by the force sensing layer correlates to a touch contact, and, if it correlates, treating the force as front-side force, while if the location and/or amount of force detected by the force sensing layer does not correlate to a touch contact, treating the force as a back-side force. Based on the type of force detected, appropriate action may be taken, including back-side specific actions such as multi-tasking application switches or content or viewport manipulation.
Abstract:
The present application is related to a computer for providing output to a user. The computer includes a processor and an input device in communication with the processor. The input device includes a feedback surface and at least one sensor in communication with the feedback surface, the at least one sensor configured to detect a user input to the feedback surface. The processor varies a down-stroke threshold based on a first factor and varies an up-stroke threshold based on a second factor. The down-stroke threshold determines a first output of the computing device, the up-stroke threshold determines a second output of the computing device, and at least one of the first factor or the second factor are determined based on the user input.
Abstract:
Systems and methods for calibrating a force input device are disclosed. The force input device includes a force-sensitive structure with a number of individual force sensors that compress or expand in response to input. The force input device measures an electrical property of the force sensors of the force-sensitive structure. After the force sensors are measured, the values obtained are adjusted based on a mechanical model of the response of the force sensitive structure. Upon receiving a force input event of high magnitude, the force input device recalibrates the mechanical model.
Abstract:
An electronic device displays a user interface of a first software application that includes one or more draggable objects and one or more control objects; and, detects a contact on a touch-sensitive surface at a first location while a focus selector is displayed over a first draggable object and a movement of the contact across the touch-sensitive surface to a second location that corresponds to a first control object. In accordance with a determination that the contact at the first location satisfies object selection criteria, the device moves the first draggable object to the first control object in accordance with the movement of the contact across the touch-sensitive surface to the first control object. In accordance with a determination that the contact at the second location satisfies first intensity criteria, the device performs a first predetermined operation that corresponds to activation of the first control object.
Abstract:
Embodiments of the present disclosure provide a method and system for dynamically controlling a current that is applied to a light source of an optical encoder.
Abstract:
An error correction method and a mobile communication device incorporating the error correction method. The error correction method begins with receiving fingerprint image information that includes a set of swatches. A first one of the received swatches is matched to a second one of the swatches at an edge. A measure of fingerprint image manipulation is determined responsive to an amount of processing to perform and an amount of fingerprint image error. Then the fingerprint image information is manipulated in response to an optimum value of the measure.