Abstract:
The embodiments of the present application relate to the technical field of touch display device, and disclose a touch display device, including a touch display panel and a control unit arranged on a side of the touch display panel, with a first wiring area being arranged between the touch display panel and the control unit; wherein a plurality of data connection lines and a plurality of touch connection lines are led out of a side edge of the touch display panel, the plurality of data connection lines being connected with a plurality of data pins on the control unit in a one-to-one correspondence manner, while the plurality of touch connection lines being connected with a plurality of touch pins on the control unit in a one-to-one correspondence manner; and wherein within the first wiring area, the plurality of data connection lines are divided into two wiring layers, the plurality of touch connection lines being arranged at least in layer in which one wiring layer of the data connection lines are located. According to the above technical scheme, by arranging the data connection lines in a layering manner, a bezel width occupied by the data connection lines is reduced, and influence of the data connection lines on the bezel width is in turn reduced, facilitating development of the slim bezel of the touch display device.
Abstract:
Embodiments of the present application provide a method and a device for acquiring ECG data, and an ECG detection system. A method for acquiring ECG data, comprising: acquiring ECG signals of heart; performing a first-stage amplification on the ECG signals, a multiple of the first-stage amplification including 5 to 10 times; performing band-pass filtering process within a first frequency range on the ECG signals on which the first-stage amplification has been performed, the first frequency range being 0.1 Hz to 50 Hz; performing a second-stage amplification on the ECG signals on which the band-pass filtering process has been performed, a multiple of the second-stage amplification including 40 to 50 times; performing analog-to-digital conversion on the ECG signals on which the second-stage amplification has been performed, to generate ECG digital signals; and outputting the ECG digital signals.
Abstract:
An in-cell touch panel and a display device are disclosed. The in-cell touch panel includes an array substrate provided with a plurality of sub-pixels, and a plurality of gate lines and a plurality of data lines that are disposed on the array substrate, intersected with each other and insulated from each other, a plurality of self capacitive electrodes which are disposed in a same layer and independent of each other, and a plurality of touch lines connecting the self capacitive electrodes to the touch detection chip; the plurality of gate lines and the plurality of data lines are intersected with each other to define the plurality of sub-pixels; each of the sub-pixels includes a pixel electrode and is configured with a long side and a short side; and the touch lines are disposed along the direction of short sides of the sub-pixels.
Abstract:
The present disclosure provides a shift register, a display device, and a method for driving the display device. A pull-down module and a stop module are added in the shift register. When a full screen picture is displayed, the signal output port outputs a high-level signal to the gate line connected with the signal output port, such that the gate line scans the display panel of the display device normally. The pull-down module may maintain the pull-up node and the signal output port at a low-level during the non-working time of the shift register, so as to prevent the shift register from outputting noise. When a local picture is displayed, under the control of the stop signal input port Stop, the stop module outputs the low-level signal to the gate line connected with the signal output port, such that the gate line stops scanning the display panel.
Abstract:
The present invention provides a touch LCM comprising an array substrate and a color film substrate provided opposite to each other, wherein an optical film set is provided at a side of the color film substrate away from the array substrate, comprising a touch signal feedback layer, a touch signal receiving layer and an upper polarizer film provided there between. With the design of integrating the upper polarizer film, the touch signal feedback layer and the touch signal receiving layer into the optical film set, the optical film set has both the polarizing function in the conventional sense and the function of touch electrode.
Abstract:
The present disclosure provides a shift register unit, a driving method thereof, a gate driving circuit and a display device. The shift register unit includes a pull-up node state maintenance circuitry connected to a pull-up node and a first control voltage input end, and configured to control the pull-up node to be electrically connected to, or electrically disconnected from, the first control voltage input end in accordance with a potential at the pull-up node and an input potential at the first control voltage input end.
Abstract:
A shift register unit, a gate driving circuit and a driving method thereof, a display device. The shift register unit includes: a first input circuit configured for outputting a voltage of a first voltage terminal to a pull-up node under a control of a first signal terminal; a second input circuit configured for outputting a voltage of a second voltage terminal to the pull-up node under a control of a second signal terminal; an output circuit configured for outputting a clock signal of a clock signal terminal to the signal output terminal under a control of the pull-up node; a pull-up node reset circuit configured for outputting a voltage of the third voltage terminal to the pull-up node under a control of the third signal terminal.
Abstract:
The embodiments of the present disclosure disclose a pixel circuit and a driving method thereof, a display substrate, and a display device, the present disclosure belongs to the field of displaying. The pixel circuit includes a gate line, a data line, a first charging sub-circuit, a second charging sub-circuit and a display sub-circuit; the first charging sub-circuit is configured to be controllable to output a data signal from the data line to a charging node and to store the data signal from the data line; and the second charging sub-circuit is respectively connected to the charging node, the gate line and the display sub-circuit, and is configured to be controllable to output a data signal from the charging node to the display sub-circuit.
Abstract:
The present disclosure discloses a shift register, a gate line driving method, an array substrate, and a display apparatus, and belongs to the field of displays. The shift register comprises a plurality of shift register units each connected to a group of gate lines on an array substrate, wherein different shift register units are connected to different groups of gate lines, and each group of gate lines comprises at least two gate lines; and a control unit configured to control turn-on and turn-off of the gate lines, wherein the control unit is further configured to control various gate lines in a high resolution region to be turned on and turned off line by line, and control at least two adjacent gate lines in a low resolution region to be turned on and turned off synchronously.
Abstract:
A ray detector includes a base substrate including a plurality of pixel regions arranged in an array. Each pixel region includes a thin film transistor including a source and a drain, and a photoelectric sensor on the thin film transistor. The photoelectric sensor includes a first electrode and a second electrode spaced apart from each other, a dielectric layer on the first electrode and the second electrode and covering the first electrode and the second electrode, and a first semiconductor layer on the dielectric layer. The first electrode is electrically connected to the drain. A distance between a surface of the first electrode away from the base substrate and the base substrate is a first distance. A distance between a surface of the second electrode away from the base substrate and the base substrate is a second distance. The first distance is substantially equal to the second distance.