摘要:
In an Orthogonal Frequency Division Multiplex (“OFDM”) system, the problem of an interferer reducing the signal-to-noise ratio of a signal can be mitigated by generating an interferer-correction signal and subtracting it from the signal to be processed. The amplitude, frequency and phase of the interferences are determined first. The frequency is estimated by averaging the squared-magnitude of multiple FFTs of the incoming signal and then locating the spectral peaks. The phase and amplitude may be estimated from this FFT outputs or through a process of correlation in the time domain. The interferer-correction signal is generated from the estimated amplitude, frequency, and phase. The correction to be subtracted from the main signal in order to reduce the effect of the interference may be generated in the time or frequency domain. The subtraction of the correction may also be implemented in the time or frequency domains.
摘要:
A system and method are provided for implementing a peak-to-average power ratio (PAPR) reduction scheme for Orthogonal Frequency-Division Multiple Access (OFDMA) modulation. A unique PAPR reduction scheme for OFDMA modulation for systems operated according to a DOCSIS standard achieves results similar to those attributable to tone reservation schemes in a manner that does not negatively affect an amount of available data capacity, particularly in implementations with limited numbers of subcarriers. The disclosed systems and methods are particularly adaptable to next generation cable gateways and/or next generation cable modems. These next generation cable gateways and/or cable modems may find particular utility in advanced hybrid fiber/coaxial cable systems. The adaptable cable gateways/modems may include a cable gateway system-on-chip (SOC) configuration. The disclosed schemes may be applicable to OFDM modulation. For OFDM, however, the known tone reservation algorithms also may be employed.
摘要:
Methods and systems to mitigate impulse interference in an OFDM QAM signal. A per-symbol noise measure, or quality measure (QM) is computed for a symbol k as a MSE of distances between carriers in the symbol and points of corresponding QAM constellations. MSE(k) is averaged over multiple symbols to compute a background signal QM, AVG_MSE(k). If MSE(k) exceeds AVG_MSE(k) by a moderate amount, symbol k may be moderately affected by impulse interference, and per-carrier SNR estimates are downgraded for all data carriers in symbol k, prior to LLR computation. SNR downgrading may be linear or step-wise based on an extent to which MSE(k) exceeds AVG_MSE(k). If MSE(k) exceeds AVG_MSE(k) by a significant amount, symbol k may be significantly affected by impulse interference, and LLRs may be set to indicate that all data carriers are erased in symbol k.
摘要:
Embodiments of methods for receiving and processing multi-band signals in wideband and narrowband environments are described herein. Other embodiments may be described and claimed.
摘要:
Embodiments of methods for receiving and processing multi-band signals in wideband and narrowband environments are described herein. Other embodiments may be described and claimed.
摘要:
In one embodiment of the invention, a Fourier transform unit convert a unsynchronized received through multiple antennas to a frequency domain. Also, a spectrum estimation unit determines a power spectrum for the unsynchronized data. A notch filter removes data within a frequency band from additional unsynchronized data based on the power spectrum. A synchronization unit synchronizes the notch filtered data and a noise estimation unit determines a noise covariance matrix between the synchronized data received from multiple antennas. In addition, an equalization unit performs channel equalization on the synchronized data based on the noise covariance matrix.
摘要:
In an Orthogonal Frequency Division Multiplex (“OFDM”) system, the problem of an interferer reducing the signal-to-noise ratio of a signal can be mitigated by generating an interferer-correction signal and subtracting it from the signal to be processed. The amplitude, frequency and phase of the interferences are determined first. The frequency is estimated by averaging the squared-magnitude of multiple FFTs of the incoming signal and then locating the spectral peaks. The phase and amplitude may be estimated from this FFT outputs or through a process of correlation in the time domain. The interferer-correction signal is generated from the estimated amplitude, frequency, and phase. The correction to be subtracted from the main signal in order to reduce the effect of the interference may be generated in the time or frequency domain. The subtraction of the correction may also be implemented in the time or frequency domains.
摘要:
A system according to one embodiment includes a demodulator configured to receive an OFDM modulated signal over a channel, the signal including a sequence of symbols, each of the symbols including one or more pilot carriers and one or more data carriers; a time filtering and interpolation circuit coupled to the demodulator, the time filtering and interpolation circuit configured to estimate the frequency response of the channel based on time filtering and interpolation of the pilot carriers; a phase slope correction circuit configured to apply each of a plurality of phase slope corrections to the frequency response and to the data carriers; a frequency filtering and interpolation circuit configured to calculate frequency response estimates of the channel at data carrier frequencies based on frequency filtering and interpolation of the phase slope corrected frequency response; an equalization circuit configured to equalize the phase slope corrected data carriers based on the calculated frequency response estimates; an error calculation circuit configure to calculate the mean square error between the equalized data carriers and a nearest QAM constellation point; and an iterative phase slope optimization circuit configured to select the phase slope correction associated with the minimum of the mean square errors, wherein the selected phase slope resolves the cyclic ambiguity.
摘要:
An approach is provided to mitigate phase noise by correcting common phase error and inter-carrier-interference in a received signal. The approach involves determining a received signal includes phase noise comprising at least a common phase error component and an inter-carrier-interference component. The approach also involves causing the common phase error to be corrected based on one or more pilot carriers. The approach further involves causing an estimate of a main signal component to be subtracted from the one or more pilot carriers. The approach additionally involves determining a sequence of estimated coefficients of a multiplicative phase noise sequence. The approach also involves causing the inter-carrier-inference to be corrected by processing the multiplicative phase noise sequence using the sequence of estimated coefficients. The approach further involves causing an equalized data signal to be output based on the corrected common phase error and the corrected inter-carrier-interference.
摘要:
Methods and systems to resolve the cyclic time ambiguity of a scattered pilot based channel impulse response, including to determine a channel impulse response from a combination of scattered pilots and encoded parameters, such as L1-pre signaling within P2 symbols of a terrestrial digital video broadcast (DVD) in a single frequency network (SFN), and including to re-use a corresponding window time to track the channel impulse response in the absence of encoded parameters. Methods and systems disclosed herein may be implemented with respect to channel acquisition and tracking, including adjusting a Fast Fourier Transform trigger point to reduce inter-symbol interference.