Scintillator having phase separation structure and radiation detector using the same
    41.
    发明授权
    Scintillator having phase separation structure and radiation detector using the same 有权
    具有相分离结构的闪烁体和使用其的放射线检测器

    公开(公告)号:US08669527B2

    公开(公告)日:2014-03-11

    申请号:US14048637

    申请日:2013-10-08

    CPC classification number: G01T1/2006 G01T1/202

    Abstract: Provided is a scintillator used for detecting radiation in an X-ray CT scanner or the like, the scintillator having a unidirectional phase separation structure having an optical waveguide function, which eliminates the need of formation of partition walls for preventing crosstalks. The scintillator has the phase separation structure including: a first crystal phase including multiple columnar crystals having unidirectionality; and a second crystal phase filling space on the side of the first crystal phase. The second crystal phase includes a material represented by Cs3Cu2[XaY1-a]5, where X and Y are elements which are different from each other and which are selected from the group consisting of I, Br, and Cl, and 0≦a≦1 is satisfied.

    Abstract translation: 提供了用于检测X射线CT扫描仪等中的辐射的闪烁体,该闪烁体具有具有光波导功能的单向相分离结构,其消除了形成用于防止串扰的分隔壁的需要。 闪烁体具有相分离结构,包括:包含具有单向的多个柱状晶体的第一晶相; 以及在第一结晶相侧的第二晶相填充空间。 第二结晶相包括由Cs 3 Cu 2 [X y Y 1-a] 5表示的材料,其中X和Y是彼此不同的并且选自I,Br和Cl的元素,并且0 @ a @ 1满足。

    CERAMIC ARTICLE PRODUCTION METHOD AND CERAMIC ARTICLE

    公开(公告)号:US20210309575A1

    公开(公告)日:2021-10-07

    申请号:US17331906

    申请日:2021-05-27

    Abstract: Provided are a method of manufacturing a ceramic article including a porous portion in which improvement in mechanical strength of a modeled article is achieved while high modeling accuracy is obtained, and a ceramic article. The method of manufacturing a ceramic article includes the steps of: (i) irradiating powder of a metal oxide containing aluminum oxide as a main component with an energy beam based on modeling data to melt and solidify or sinter the powder, to thereby form a modeled article including a porous portion; (ii) causing the modeled article formed in the step (i) to absorb a liquid containing a zirconium component; and (iii) heating the modeled article that has absorbed the liquid containing the zirconium component, wherein, in the absorbing step, the liquid is absorbed so that a ratio of the zirconium component in a metal component contained in the porous portion becomes 0.3 to 2.0 mol %.

    METHOD OF PRODUCING MANUFACTURED OBJECT AND MANUFACTURED OBJECT

    公开(公告)号:US20200247004A1

    公开(公告)日:2020-08-06

    申请号:US16855865

    申请日:2020-04-22

    Abstract: Provided is a method of producing a manufactured object including forming the manufactured object by performing, once or a plurality of times, a step of forming a powder layer from material powders containing powders of an inorganic compound and a step of irradiating a predetermined region of a surface of the powder layer with an energy beam and thereby fusing/solidifying the material powders. In the step of fusing/solidifying the material powders, an amorphous-rich region and a crystalline-rich region are formed separately by changing at least one of an output of the energy beam, a relative position between the surface of the powder layer and a focus of the energy beam, and a scanning rate.

    SCINTILLATOR PLATE, RADIATION DETECTOR, AND RADIATION MEASUREMENT SYSTEM

    公开(公告)号:US20190033472A1

    公开(公告)日:2019-01-31

    申请号:US16077592

    申请日:2017-02-14

    Abstract: Provided is a scintillator plate, including a plurality of scintillator crystals each including a plurality of first phases and a second phase present on a periphery of each of the plurality of first phases, in which the each of the plurality of first phases and the second phase are different from each other in refractive index with respect to scintillation light, the adjacent scintillator crystals are joined to each other through intermediation of an adhesive layer, and at least a part of an extension line of a center axis of the each of the plurality of first phases of the adjacent scintillator crystals passes through the adhesive layer.

Patent Agency Ranking