Abstract:
The present embodiments provide stent-grafts. In one embodiment, a stent has proximal and distal ends, a plurality of strut segments disposed between the proximal and distal ends that enable expansion of the stent from a compressed state to a deployed state, and a series of distal apices disposed at the distal end of the stent. At least a portion of a first distal apex overlaps with graft material. First and second sutures are each coupled between a portion of the first distal apex and the graft material. The first and second sutures are positioned at different longitudinal zones that lack an axial overlap with one another.
Abstract:
A hybrid prosthesis for deployment in a body vessel includes a tubular stent body comprising a wire comprising a shape memory alloy, where the tubular stent body has a self-expanding portion comprising a distal portion of the wire and a balloon-expandable portion comprising a proximal portion of the wire. The shape memory alloy comprises an Af of less than 37° C. in the self-expanding portion and an As of greater than 37° C. in the balloon-expandable portion.
Abstract:
The present embodiments provide a method for delivering a stent comprising providing a stent in a delivery state, where the stent comprises a plurality of interconnected strut segments that enable expansion of the stent from a delivery state to a deployed state. Stacking a frontal surface of a first strut segment at least partially behind a rear surface of a second strut segment in the delivery state. Aligning a sharpened tip of a first barb at least partially circumferentially behind at least one strut segment in the delivery state such that the sharpened tip is not radially exposed. Expanding the stent from the delivery state to a deployed state, wherein the first barb is exposed to a patient in the deployed state.
Abstract:
The present embodiments provide a method for delivering a stent comprising providing a stent in a delivery state, where the stent comprises a plurality of interconnected strut segments that enable expansion of the stent from a delivery state to a deployed state. Stacking a frontal surface of a first strut segment at least partially behind a rear surface of a second strut segment in the delivery state. Aligning a sharpened tip of a first barb at least partially circumferentially behind at least one strut segment in the delivery state such that the sharpened tip is not radially exposed. Expanding the stent from the delivery state to a deployed state, wherein the first barb is exposed to a patient in the deployed state.
Abstract:
An introducer for an endoluminal prosthesis and a methods for delivering a prosthesis within a body vessel are described. The introducer comprises pusher catheter having a lumen extending therethrough, the lumen being in communication with an opening formed in the sidewall of the pusher. A sheath is disposed over the pusher catheter and also has an opening formed in its sidewall. The sheath is longitudinally movable relative to the pusher catheter between a prosthesis delivery position and a prosthesis deployment position. When the sheath is in the deployment position, the opening formed in the sidewall of the pusher catheter is at least partially longitudinally aligned with the opening formed in the sidewall of the sheath. A wire may extend though the opening in the sheath, the opening in the pusher, through the lumen of the pusher and through a fenestration in a prosthesis to cannulate a branch vessel.
Abstract:
The present embodiments provide systems and methods for deploying at least a portion of a stent. In one embodiment, the system comprises a cannula having an outer surface, and a coiled member having proximal and distal ends and a plurality of turns disposed therebetween. At least a portion of the coiled member is secured to the outer surface of the cannula. A stent is releasably secured to a portion of the coiled member. A protective cage may encircle the coiled member.
Abstract:
A prosthesis delivery device and method of using the same is described. The delivery device comprises a rotatable inner cannula extending from a proximal end to a distal end with a prosthesis releasably coupled to the proximal end. A delivery handle assembly is disposed at the distal end of the delivery device. The handle comprises a first handle disposed about the inner cannula, a rotary dial rotatably disposed about a distal end of the first handle and a second handle disposed about at least a portion of the distal end of the first handle. The second handle is longitudinally moveable relative to the first handle between a first position wherein the sheath is coaxially disposed about the prosthesis and rotation of the rotary dial is prevented, and a second position wherein the sheath is retracted distally to expose at least a portion of the prosthesis and rotation of the dial is permitted.
Abstract:
The present embodiments provide systems and methods for loading a stent or stent graft onto an introducer for intraluminal deployment. In one example, a system includes an endoluminal prosthesis introducer comprising a stent retaining member engageable with a stent end. The system may also include a loading tool for engaging the stent end on the stent retaining member. The loading tool may include a loading body having a passage extending from a first end to a second end and a slot that extends through the tubular loading body from the passage to an outer surface of the tubular loading body, and the slot may further extend from the second end toward the first end. The stent retaining member may be disposed at least partially within the passage of the loading body, and the slot of the loading body may be rotatable around the stent retaining member.
Abstract:
The present embodiments provide systems and methods for deploying at least a portion of a stent. In one embodiment, the system comprises a cannula having an outer surface, and at least one coiled member having proximal and distal ends and a plurality of turns disposed therebetween. One of the proximal and distal ends of the coiled member is secured to the outer surface of the cannula, and the other of the proximal and distal ends of the coiled member is unsecured relative to the outer surface of the cannula. A portion of a stent is looped around the unsecured end of the coiled member. Rotation of the cannula causes the portion of the stent to disengage from the coiled member. The end of the coiled member that is secured relative to the cannula is secured using at least two securing members.
Abstract:
A deployment handle for an expandable medical device, a handle having a proximal end, a distal end, and a lumen/passageway extending between the proximal and distal ends; an inner cannula; and a tension mechanism located inside the handle and secured to the inner cannula so that the inner cannula rotates when the tension mechanism is actuated.