Abstract:
In one embodiment, a method comprises: receiving, by a transport layer executed by a processor circuit in an apparatus, a flow of application data having been originated by an executable application; storing, by the transport layer, the application data as transport layer packets in a buffer circuit in the apparatus, each transport layer packet having a corresponding transport sequence identifier identifying a corresponding position of the transport layer packet relative to a transmit order of the transport layer packets; and causing, by the transport layer, a plurality of deterministic network interface circuits to deterministically retrieve the transport layer packets, in the transmit order, from the buffer circuit for deterministic transmission across respective deterministic links, the transport sequence identifiers enabling a destination transport layer to recover the transmit order of the transport layer following the deterministic transmission across the deterministic links, regardless of order of reception by the destination transport layer.
Abstract:
In one embodiment, a method comprises: promiscuously detecting, by a parent network device in a tree-based network topology, a data packet transmitted to a child network device attached to the parent network device, the data packet transmitted by a grandchild network device attached to the child network device; determining, by the parent network device, whether the data packet transmitted to the child network device is to be forwarded toward a destination via the parent network device; and the parent network device selectively initiating intercepted forwarding of the data packet toward the destination, on behalf of the child network device, based on determining that the data packet is to be forwarded toward the destination via the parent network device.
Abstract:
In one embodiment, a method comprises: a root network device of a tree-based network topology identifying an instability in an identified child device attaching within the tree-based network topology; the root network device generating and storing in a routing information base table, for each sub-child device reachable via the identified child device, a corresponding source-route path starting with the identified child device and ending at the corresponding sub-child device; the root network device adding, to the routing information base table, a current path for reaching the identified child device, enabling the root network device to generate a path for reaching any one sub-child device using the corresponding source-route path via the current path of the identified child device.
Abstract:
In one embodiment, a method comprises: a network device, having attached to a first parent device in a tree-based network topology, attaching to a second parent device advertising better network performance than the first parent device; and the network device detaching from the second parent device, and reattaching to the first parent device, in response to the network device determining the corresponding network performance via the second parent device is worse than any one of the advertised better network performance, the corresponding network performance via the first parent device, or an expected network performance via the second network device.
Abstract:
In one embodiment, a method comprises: generating, by a transmitting network device, a hashed source media access control (MAC) address and a hashed destination MAC address based on hashing a MAC address of the transmitting network device and a destination MAC address of a destination wireless network device, respectively, relative to an epochal transmission sequence value; and transmitting a data frame at a time slot associated with the epochal transmission sequence value, using the hashed source MAC address and the hashed destination MAC address, to the destination wireless network device.
Abstract:
In one embodiment, a method comprises receiving, by an apparatus from each of a plurality of wireless sensor devices in a wireless sensor network, clock drift information associated with a clock in the corresponding wireless sensor device; determining for each wireless sensor device, by the apparatus, an expected clock drift based at least on the clock drift information from the corresponding wireless sensor device; and sending, by the apparatus to each wireless sensor device, a corresponding drift compensation command for correcting the corresponding expected clock drift, enabling controlled synchronization of the corresponding wireless sensor device within the wireless sensor network.
Abstract:
In one embodiment, a method comprises identifying, by an apparatus in a deterministic network, a multicast forwarding tree comprising a single multicast source as a root of the multicast forwarding tree, a plurality of terminal destination devices as respective leaves of the multicast forwarding trees, and forwarding network devices configured for forwarding a message, transmitted by the root, to the terminal destination devices; and causing, by the apparatus, the forwarding network devices to deliver the message to each of the terminal destination devices simultaneously at a same arrival time.
Abstract:
In one embodiment, a method comprises: multicasting, by a wireless network device in a wireless network, a first message originated by the wireless network device and requesting reachability to an identified destination device via an identified target device class; generating, by the wireless network device, plural paths for reaching the identified destination device based on receiving destination advertisement messages having been originated by respective target devices belonging to the target device class; and pluricasting copies of a data packet to the identified destination device via the plural paths.