Abstract:
Described in detail herein are systems and methods for single instancing blocks of data in a data storage system. For example, the data storage system may include multiple computing devices (e.g., client computing devices) that store primary data. The data storage system may also include a secondary storage computing device, a single instance database, and one or more storage devices that store copies of the primary data (e.g., secondary copies, tertiary copies, etc.). The secondary storage computing device receives blocks of data from the computing devices and accesses the single instance database to determine whether the blocks of data are unique (meaning that no instances of the blocks of data are stored on the storage devices). If a block of data is unique, the single instance database stores it on a storage device. If not, the secondary storage computing device can avoid storing the block of data on the storage devices.
Abstract:
A distributed, deduplicated storage system according to certain embodiments is arranged in a parallel configuration including multiple deduplication nodes. Deduplicated data is distributed across the deduplication nodes. The deduplication nodes can be networked together and communicate with one another according using a light-weight, customized communication scheme (e.g., a scheme based on FTP or HTTP). In some cases, deduplication management information including deduplication signatures and/or other metadata is stored separately from the deduplicated data in deduplication management nodes, improving performance and scalability.
Abstract:
An information management system can manage the removal of data block entries in a deduplicated data store using working copies of the data block entries residing in a local data store of a secondary storage computing device. The system can use the working copies to identify data blocks for removal. Once the deduplication database is updated with the changes to the working copies (e.g., using a transaction based update scheme), the system can query the deduplication database for the database entries identified for removal. Once identified, the system can remove the database entries identified for pruning and/or the corresponding deduplication data blocks from secondary storage.
Abstract:
Techniques for enabling user search of content stored in a file archive include providing a search interface comprising a search rules portion and an action rules portion, receiving a file archive search criterion comprising at least one search rule, and searching the file archive using the search criterion. The techniques also include generating a set of files filtered using the search criterion and performing an action specified in the action rules portion on a file included in the set of files.
Abstract:
An information management system can manage the removal of data block entries in a deduplicated data store using working copies of the data block entries residing in a local data store of a secondary storage computing device. The system can use the working copies to identify data blocks for removal. Once the deduplication database is updated with the changes to the working copies (e.g., using a transaction based update scheme), the system can query the deduplication database for the database entries identified for removal. Once identified, the system can remove the database entries identified for pruning and/or the corresponding deduplication data blocks from secondary storage.
Abstract:
A system according to certain embodiments associates a signature value corresponding to a data block with one or more data blocks and a reference to the data block to form a signature/data word corresponding to the data block. The system further logically organizes the signature/data words into a plurality of files each comprising at least one signature/data word such that the signature values are embedded in the respective file. The system according to certain embodiments reads a previously stored signature value corresponding to a respective data block for sending from a backup storage system having at least one memory device to a secondary storage system. Based on an indication as to whether the data block is already stored on the secondary storage system, the system reads the data block from the at least one memory device for sending to the secondary storage system if the data block does not exist on the secondary storage system, wherein the signature value and not the data block is read from the at least one memory device if the data block exists on the secondary storage system.
Abstract:
Systems and methods are provided herein for automatically configuring newly installed secondary storage computing devices and managing secondary storage computing devices when one or more become unavailable. For example, a storage manager can then detect the computing resources available to the newly installed secondary storage computing device, assign a role to the newly installed secondary storage computing device based on the detected computing resources, configure the newly installed secondary storage computing device with deduplication and storage policies used by the other secondary storage computing devices, re-partition secondary storage devices to allocate memory for the newly installed secondary storage computing device, and instruct other secondary storage computing devices to replicate their managed data such that the newly installed secondary storage computing device has access to the replicated data.
Abstract:
Systems and methods are provided herein for automatically configuring newly installed secondary storage computing devices and managing secondary storage computing devices when one or more become unavailable. For example, a storage manager can then detect the computing resources available to the newly installed secondary storage computing device, assign a role to the newly installed secondary storage computing device based on the detected computing resources, configure the newly installed secondary storage computing device with deduplication and storage policies used by the other secondary storage computing devices, re-partition secondary storage devices to allocate memory for the newly installed secondary storage computing device, and instruct other secondary storage computing devices to replicate their managed data such that the newly installed secondary storage computing device has access to the replicated data.
Abstract:
A storage system according to certain embodiments includes a client-side repository (CSR). The CSR may communicate with a client at a higher data transfer rate than the rate used for communication between the client and secondary storage. During copy operations, for instance, some or all of the data being backed up or otherwise copied to secondary storage is stored in the CSR. During restore operations, copies of the data stored in the CSR is accessed from the CSR instead of from secondary storage, improving performance. Remaining data blocks not stored in the CSR can be restored from secondary storage.