Generating Retail Cohorts From Retail Data
    41.
    发明申请
    Generating Retail Cohorts From Retail Data 审中-公开
    从零售数据生成零售队列

    公开(公告)号:US20100153174A1

    公开(公告)日:2010-06-17

    申请号:US12333319

    申请日:2008-12-12

    IPC分类号: G06Q10/00 G06Q30/00

    摘要: The illustrative embodiments described herein provide a computer implemented method, apparatus, and computer program product for generating retail cohorts. In an illustrative embodiment, retail data derived from a population of retail customers is received and processed to form digital retail data. The digital retail data includes metadata describing a set of retail patterns associated with one or more customers in the population of retail customers. The set of retail patterns form a set of retail attributes for cohort generation. The digital retail data is analyzed using cohort criteria to identify a set of retail cohorts based on the set of retail attributes. The cohort criteria specify at least one retail attribute from the set of retail attributes for each cohort in the set of retail cohorts. Thereafter, a set of retail cohorts are generated. The retail cohorts have members selected from the population of retail customers, and have the at least one retail attribute in common.

    摘要翻译: 本文描述的说明性实施例提供了一种用于生成零售队列的计算机实现的方法,装置和计算机程序产品。 在说明性实施例中,接收并处理从零售客户群体导出的零售数据以形成数字零售数据。 数字零售数据包括描述与零售客户群体中的一个或多个客户相关联的一组零售模式的元数据。 这组零售模式形成了一组队列生成的零售属性。 使用队列标准分析数字零售数据,以基于零售属性集来识别一组零售队列。 队列标准从零售队列组中的每个队列指定零售属性集中的至少一个零售属性。 此后,生成一组零售队列。 零售队列有从零售客户群体中选出的成员,并具有至少一个零售属性。

    Generating Generalized Risk Cohorts
    42.
    发明申请
    Generating Generalized Risk Cohorts 审中-公开
    生成广义风险队列

    公开(公告)号:US20100153146A1

    公开(公告)日:2010-06-17

    申请号:US12333256

    申请日:2008-12-11

    IPC分类号: G06Q10/00

    CPC分类号: G06Q40/08 G06Q10/0635

    摘要: A computer implemented method, apparatus, and computer program product for generating general risk scores for general risk cohorts. Digital sensor data associated with a general risk cohort is received from a set of multimodal sensors. The digital sensor data comprises metadata describing attributes associated with at least one member of the general risk cohort. Each member of the general risk cohort comprises data describing objects belonging to a category. A general risk score for the general risk cohort is generated based on selected risk factors and the attributes associated with the at least one member of the general risk cohort. In response to a determination that the general risk score exceeds a risk threshold, a response action is initiated.

    摘要翻译: 一种计算机实现的方法,装置和计算机程序产品,用于产生一般风险队列的一般风险评分。 从一组多模式传感器接收与一般风险队列相关联的数字传感器数据。 数字传感器数据包括描述与一般风险队列的至少一个成员相关联的属性的元数据。 一般风险队列的每个成员包括描述属于类别的对象的数据。 一般风险队列的一般风险得分是根据选定的风险因素和与一般风险队列的至少一名成员相关联的属性生成的。 响应于一般风险分数超过风险阈值的确定,启动响应动作。

    Generating Cohorts Based on Attributes of Objects Identified Using Video Input
    43.
    发明申请
    Generating Cohorts Based on Attributes of Objects Identified Using Video Input 失效
    基于使用视频输入识别的对象的属性生成队列

    公开(公告)号:US20100150458A1

    公开(公告)日:2010-06-17

    申请号:US12333326

    申请日:2008-12-12

    IPC分类号: G06K9/62 G06K9/00

    CPC分类号: G06F17/30781

    摘要: A computer implemented method, apparatus, and computer program product for generating video based cohorts. Digital video data is processed to identify a set of size and shape based attributes associated with the set of objects. The digital video data comprises metadata describing the set of objects. A size and shape attribute comprises an attribute describing a shape associated with a portion of an object or a size measurement of the portion of the object. The set of size and shape based attributes are analyzed using cohort criteria to form a result. The cohort criteria specify attributes that are associated with members of a given cohort. A set of cohorts is generated based on the result. Each cohort in the set of cohorts comprises a subset of objects from the set of objects that share at least one size and shape based attribute in common.

    摘要翻译: 一种用于生成基于视频的队列的计算机实现的方法,装置和计算机程序产品。 处理数字视频数据以识别与该组对象相关联的一组基于尺寸和形状的属性。 数字视频数据包括描述对象集合的元数据。 尺寸和形状属性包括描述与对象的一部分相关联的形状的属性或对象的该部分的尺寸测量的属性。 使用队列标准来分析基于尺寸和形状的属性的集合以形成结果。 队列标准指定与给定队列的成员相关联的属性。 根据结果​​生成一组队列。 该组队列中的每个队列包括共享至少一个基于尺寸和形状的属性的对象集合的子集的子集。

    Selection and Delivery of Messages Based on an Association of Pervasive Technologies
    44.
    发明申请
    Selection and Delivery of Messages Based on an Association of Pervasive Technologies 审中-公开
    基于普适技术协会的消息选择与传递

    公开(公告)号:US20100049805A1

    公开(公告)日:2010-02-25

    申请号:US12193944

    申请日:2008-08-19

    IPC分类号: G06G7/78 G06F12/00 G06F15/16

    CPC分类号: G06F16/9535

    摘要: A computer implemented method, apparatus, and computer program product for selectively delivering messages. In one embodiment, the process identifies a set of pervasive devices using detection data. The detection data comprises an electronic signature transmitted from the set of pervasive devices associated with a set of users in a monitored location. The process then assigns a demographic profile to each user of the set of users based on an identity of a pervasive device from the set of pervasive devices which is associated with the user. Thereafter, the process presents a set of messages to the set of users, wherein the set of messages are selected using the demographic profile assigned to each user of the set of users.

    摘要翻译: 一种用于选择性地传递消息的计算机实现的方法,装置和计算机程序产品。 在一个实施例中,该过程使用检测数据识别一组普及的设备。 检测数据包括从与所监视的位置中的一组用户相关联的一组普及设备发送的电子签名。 然后,该过程基于来自与用户相关联的普及设备的集合的普适设备的身份来分配用户组的每个用户的人口统计简档。 此后,该过程向用户组呈现一组消息,其中使用分配给该组用户的每个用户的人口统计特征来选择消息集合。

    DETERMINING EFFICACY OF THERAPEUTIC INTERVENTION IN NEUROSYCHIATRIC DISEASE
    45.
    发明申请
    DETERMINING EFFICACY OF THERAPEUTIC INTERVENTION IN NEUROSYCHIATRIC DISEASE 失效
    治疗神经病学治疗效果的测定

    公开(公告)号:US20090316969A1

    公开(公告)日:2009-12-24

    申请号:US12141322

    申请日:2008-06-18

    IPC分类号: A61B5/00 G06F17/30

    摘要: A computer implemented method, apparatus, and computer program product for determining the efficacy of neuropsychiatric therapy is provided. A neuroimage mapping manager automatically compares a first set of regions of interest in a first set of scans taken at a first time to a second set of regions of interest in a second set of scans generated at a second time and identifies a set of changes in the regions of interest occurring over time. The neuroimage mapping manager searches a set of electronic medical literature sources for medical literature relevant to the set of changes in the regions of interest and identifies portions of the relevant medical literature associated with the set of changes in the regions of interest. The neuroimage mapping manager generates results comprising the set of changes in the regions of interest and a set of links to the portions of the relevant medical literature.

    摘要翻译: 提供了一种用于确定神经精神治疗疗效的计算机实现的方法,装置和计算机程序产品。 神经图像映射管理器将在第一时间拍摄的第一组扫描中的感兴趣区域的第一组区域自动地比较在第二时间生成的第二组扫描中的感兴趣区域的第二组,并且识别一组变化 感兴趣的地区随着时间的推移而发生。 神经图像映射管理器搜索一组电子医学文献来源,获取与感兴趣区域中的一组变化相关的医学文献,并且识别与感兴趣区域中的一组变化相关联的相关医学文献的部分。 神经图像映射管理器生成包含感兴趣区域中的一组变化的结果以及到相关医学文献部分的一组链接。

    OPTIMIZING PHARMACEUTICAL TREATMENT PLANS ACROSS MULTIPLE DIMENSIONS
    46.
    发明申请
    OPTIMIZING PHARMACEUTICAL TREATMENT PLANS ACROSS MULTIPLE DIMENSIONS 失效
    优化多维度药物治疗计划

    公开(公告)号:US20090240523A1

    公开(公告)日:2009-09-24

    申请号:US12054074

    申请日:2008-03-24

    IPC分类号: G06Q50/00

    摘要: A computer implemented method for generating optimized pharmaceutical treatment plans for an individual. A set of known treatments to be used by the target individual over a future period of time is generated. An actual use of the treatments in the set of known treatments by the target individual during the future period of time is substantially certain. A set of probable treatments of the target individual is received. The actual use of the treatments in the set of probable treatments by the target individual during the future period of time is uncertain. An optimized pharmaceutical treatment plan for the target individual is generated. The optimized pharmaceutical treatment plan comprises medications and durable medical goods that are likely to be used by the target individual over the future period of time optimized over a set of dimensions associated with the set of known treatments and the set of probable treatments.

    摘要翻译: 一种用于为个体生成优化的药物治疗计划的计算机实施方法。 产生一组目标个体在未来时间段内使用的已知治疗方法。 目标个体在未来时间段内对一组已知治疗的实际使用情况基本上是确定的。 收到一组目标个人的可能治疗。 目标个人在未来一段时间内在一组可能治疗中的实际使用是不确定的。 产生针对目标个体的优化药物治疗计划。 优化的药物治疗计划包括可能由目标个体在未来时间段内被使用的药物和耐久性医疗用品,其优化于与一组已知治疗和一组可能的治疗相关联的一组尺寸。

    AUTOMATIC GENERATION OF NEW RULES FOR PROCESSING SYNTHETIC EVENTS USING COMPUTER-BASED LEARNING PROCESSES
    47.
    发明申请
    AUTOMATIC GENERATION OF NEW RULES FOR PROCESSING SYNTHETIC EVENTS USING COMPUTER-BASED LEARNING PROCESSES 失效
    使用基于计算机的学习过程处理合成事件的新规则的自动生成

    公开(公告)号:US20090024553A1

    公开(公告)日:2009-01-22

    申请号:US12243825

    申请日:2008-10-01

    IPC分类号: G06F17/00

    CPC分类号: G06N5/025

    摘要: A computer implemented method. A first synthetic event is received. The first synthetic event is derived from a first cohort comprising a first set of data and a second cohort comprising a second set of data. The first synthetic event comprises a third set of data representing a result of a mathematical computation on the first and second cohorts. A first rule set is created, the first synthetic event being expected as a result of application of the first rule set to the first cohort and the second cohort. The first rule set is applied to the first cohort and the second cohort to achieve a first result. The first result comprises a second event that is compared to the first synthetic event. A comparison is formed, the comparison comprising additional data that can be used to describe a difference between the second event and the first synthetic event.

    摘要翻译: 一种计算机实现的方法。 收到第一个合成事件。 第一合成事件来自包括第一组数据的第一队列和包括第二组数据的第二队列。 第一合成事件包括表示第一和第二队列上的数学计算结果的第三组数据。 创建第一规则集,作为将第一规则集应用于第一队列和第二队列的结果而预期的第一合成事件。 第一个规则集适用于第一个队列和第二个队列,以实现第一个结果。 第一个结果包括与第一个合成事件进行比较的第二个事件。 形成比较,比较包括可用于描述第二事件和第一合成事件之间的差异的附加数据。

    SYSTEM AND METHOD FOR DERIVING A HIERARCHICAL EVENT BASED DATABASE OPTIMIZED FOR CLINICAL APPLICATIONS
    48.
    发明申请
    SYSTEM AND METHOD FOR DERIVING A HIERARCHICAL EVENT BASED DATABASE OPTIMIZED FOR CLINICAL APPLICATIONS 失效
    用于临床应用优化的基于分层事件的数据库的系统和方法

    公开(公告)号:US20080208903A1

    公开(公告)日:2008-08-28

    申请号:US11678997

    申请日:2007-02-26

    IPC分类号: G06F17/30

    CPC分类号: G06F17/30536 G06F2216/03

    摘要: A computer implemented method, apparatus, and computer usable program code for inferring a probability of a first inference absent from a database at which a query regarding the inference is received. Each datum of the database is conformed to the dimensions of the database. Each datum of the plurality of data has associated metadata and an associated key. The associated metadata includes data regarding cohorts associated with the corresponding datum, data regarding hierarchies associated with the corresponding datum, data regarding a corresponding source of the datum, and data regarding probabilities associated with integrity, reliability, and importance of each associated datum. The query is used as a frame of reference for the search. The database returns a probability of the correctness of the first inference based on the query and on the data.

    摘要翻译: 一种计算机实现的方法,装置和计算机可用程序代码,用于推断从接收到关于推理的查询的数据库中不存在第一推断的概率。 数据库的每个数据符合数据库的维度。 多个数据的每个数据具有关联的元数据和相关联的密钥。 关联的元数据包括关于与相应数据相关联的队列的数据,关于与相应数据相关联的层级的数据,关于数据的相应源的数据,以及关于与每个相关联的数据的完整性,可靠性和重要性相关联的概率的数据。 该查询用作搜索的参考框架。 数据库返回基于查询和数据的第一推断的正确性的概率。

    Generation of synthetic context objects

    公开(公告)号:US09619580B2

    公开(公告)日:2017-04-11

    申请号:US13609710

    申请日:2012-09-11

    IPC分类号: G06F7/00 G06F17/30

    CPC分类号: G06F17/30964

    摘要: A processor-implemented method, system, and/or computer program product generates and utilizes synthetic context-based objects. A non-contextual data object is associated with a context object to define a synthetic context-based object, where the non-contextual data object ambiguously relates to multiple subject-matters, and where the context object provides a context that identifies a specific subject-matter, from the multiple subject-matters, of the non-contextual data object. The synthetic context-based object is then associated with at least one specific data store, which includes data that is associated with data contained in the non-contextual data object and the context object. A request for a data store that is associated with the synthetic context-based object results in the return of at least one data store that is associated with the synthetic context-based object.