摘要:
A laser diode is fixed to a light source support substrate and a first surface of a slider substrate is fixed to a second surface of the light source support substrate; therefore, the slider substrate and the laser diode are kept in a fixed positional relation. Since the laser diode faces a light entrance face of a core, long-distance propagation of light as in the conventional technology does not occur, and light emitted from a light emitting element is guided well to a medium-facing surface while permitting some mounting error and coupling loss of light. A spot size w of a light intensity distribution along the X-axis in the XY plane including an incident-light centroid position on the light entrance face is set larger than a thickness of the core, whereby variation in incidence efficiency is well suppressed against positional deviation.
摘要:
A heat-assisted magnetic recording head includes a slider, and an edge-emitting laser diode that emits polarized light of TM mode. The laser diode is arranged so that its bottom surface faces the top surface of the slider. An electrode of the laser diode closer to the active layer is bonded to a conductive layer of the slider, whereby the laser diode is fixed to the slider. As viewed from above the laser diode, the bottom surface of the electrode of the laser diode includes a first area that a light propagation path of the laser diode overlies, and a second area other than the first area. The top surface of the conductive layer is in contact not with the first area but with the second area of the bottom surface of the electrode.
摘要:
A thermally assisted magnetic head has a slider having a medium-facing surface, and a light source unit having a light source support substrate, and a light source disposed on the light source support substrate. The slider has a slider substrate and a magnetic head portion disposed on a side of the medium-facing surface in the slider substrate; the magnetic head portion includes a magnetic recording element for generating a magnetic field, and a waveguide for receiving light through an end face opposite to the medium-facing surface, and guiding the light to the medium-facing surface; the light source support substrate is fixed to a surface opposite to the medium-facing surface in the slider substrate so that light emitted from the light source can enter the end face of the waveguide.
摘要:
A pair of domain control layers are disposed on both sides of the track width direction of the MR film so as to be separated from each other such that the MR film is held therebetween, and apply a longitudinal magnetic field to the MR film (free layer). The MR film is flanked by the domain control layers, each including a layer structure constituted by a base layer, a ferromagnetic layer, and a hard magnetic layer. The base layer causes the hard magnetic layer to have a magnetization direction aligning with an in-plane direction, so as to enhance the coercive force of the hard magnetic layer.
摘要:
Producing a thin film magnetic head includes forming a pair of openings in a predetermined region of a TMR layer formed on a lower magnetic shield layer; forming a pair of bias-applying layers in the pair of openings so that an upper surface thereof is located above an upper surface of the TMR layer; laminating a metal layer that covers the upper surface of a portion located between the pair of bias-applying layers in the TMR layer and the upper surface of the pair of bias-applying layers; forming a resist layer across the upper surface of a portion located above the pair of bias-applying layers in the metal layer and the upper surface of a portion located above the TMR layer in the metal layer; and etching a part of the TMR layer and a part of the pair of bias-applying layers with the resist layer being as a mask.
摘要:
A method of producing a thin film magnetic head includes the steps of: forming a pair of openings in a predetermined region of a TMR layer formed on a lower magnetic shield layer; forming a pair of bias-applying layers in the pair of Openings so that an upper surface thereof may be located above an upper surface of the TMR layer; laminating a metal layer that covers the upper surface of a portion located between the pair of bias-applying layers in the TMR layer and the upper surface of the pair of bias-applying layers; forming a resist layer across the upper surface of a portion located above the pair of bias-applying layers in the metal layer and the upper surface of a portion located above the TMR layer in the metal layer; and etching a part of the TMR layer and a part of the pair of bias-applying layers with the resist layer being as a mask. Here, the reflectivity R for the incident light having a wavelength of 248 nm at an interface between the metal layer and the resist layer is set so as to satisfy the condition represented by the following formula (1), and also the magnitude D of a step is set so as to satisfy the condition represented by the following formula (2). R≧0.2 (1) D≧210 exp(−7.6R) [nm] (2)
摘要:
A method comprises a first multilayer body forming step of forming a first multilayer body on a first cladding layer, the first multilayer body including a core layer and a first polishing stop layer in order from the first cladding layer side; a first multilayer body patterning step of pattering the first multilayer body, so as to expose the first cladding layer about the patterned first multilayer body; a second multilayer body forming step of forming a second multilayer body on the exposed first cladding layer and patterned first multilayer body, the second multilayer body including a second cladding layer and a second polishing stop layer in order from the first cladding layer side; and a removing step of polishing away a part of the second multilayer body formed on the first multilayer body.
摘要:
A thermally assisted magnetic head has a slider having a medium-facing surface, and a light source unit having a light source support substrate, and a light source disposed on the light source support substrate; the slider has a slider substrate and a magnetic head portion disposed on a side surface of the slider substrate; the magnetic head portion has a magnetic recording element for generating a magnetic field, first and second waveguides, for receiving light through an end face and guiding the light to the medium-facing surface, and a near-field light generator disposed on an end face; the light source support substrate is fixed to a surface of the slider substrate so that light emitted from the light source can enter the end face of the first waveguide.
摘要:
A thermally assisted magnetic head has a slider having a medium-facing surface, and a light source unit having a light source support substrate, and a light source disposed on the light source support substrate. The slider has a slider substrate and a magnetic head portion disposed on a side of the medium-facing surface in the slider substrate; the magnetic head portion includes a magnetic recording element for generating a magnetic field, and a waveguide for receiving light through an end face opposite to the medium-facing surface, and guiding the light to the medium-facing surface; the light source support substrate is fixed to a surface opposite to the medium-facing surface in the slider substrate so that light emitted from the light source can enter the end face of the waveguide.
摘要:
A thermally assisted magnetic head has a medium-facing surface facing a medium, and comprises: a waveguide an end face of which is exposed in the medium-facing surface; an electroconductive near-field light generator plate disposed on a medium-facing surface of the waveguide so that a principal face thereof faces the medium; and an electroconductive near-field light scatter plate disposed on the medium-facing surface of the thermally assisted magnetic head so that a principal face thereof faces the medium; when viewed from a direction perpendicular to the medium-facing surface, the near-field light generator plate has a cusp portion at an end; when viewed from the direction perpendicular to the medium-facing surface, the near-field light scatter plate is arranged along the other end opposite to the cusp portion of the near-field light generator plate; when viewed from the direction perpendicular to the medium-facing surface, a width of the near-field light scatter plate in a first direction perpendicular to a direction connecting the cusp portion and the other end of the near-field light generator plate is larger than a width in the first direction of the near-field light generator plate.