Abstract:
Provided is an optical submodule which includes an optical transmission/reception module that optically couples an optical transmission signal and an optical reception signal into one optical fiber and a flexible printed circuit board (FPCB) mounted on the optical transmission/reception module that functions as an electrical signal interface with a main board, and an electrical signal line of an optical transmission channel for the optical transmission signal and an electrical signal line of an optical reception channel for the optical reception signal may be deployed on different sides of the FPCB.
Abstract:
An optical transmitter based on optical time division multiplexing is disclosed, which may solve the issues of complex structure and operation of a multilevel-OTDM-based optical transmitter while using a multilevel signal modulation format and OTDM technology that may increase the transmission rate of an optical transmitter with limited bandwidth.
Abstract:
A silicon-based optical modulator. An optical modulator of a Mach-Zehnder type includes an optical coupler configured to separate a single optical signal into two optical signals having same output power, two phase shifters having a PN junction through which the two optical signals separated through the optical coupler pass respectively, a plurality of electrodes configured to apply an electrical signal to the two phase shifters, and two PN diodes disposed between the two phase shifters and configured to adjust an operating bandwidth of the optical modulator. The optical signals respectively passing through the two phase shifters have phases that change as a width of a depletion region changes based on a magnitude of a reverse voltage provided to the two phase shifters through the electrodes and a refractive index changes.
Abstract:
An optical transmitting module includes: light sources configured to output optical signals, an optical multiplexer configured to multiplex the optical signals output from the light sources, a collimating lens configured to convert an optical signal output from the optical multiplexer to a form of parallel beam, a package inside which the light sources, the optical multiplexer, and the collimating lens are provided, and an optical isolator disposed on one inner surface of the package, in which the optical signals output from the light sources are multiplexed into a single optical signal through the optical multiplexer disposed inside the package, and the single optical signal passes through the collimating lens and is then optically coupled to an optical fiber stub in a receptacle through a focusing lens disposed outside the package to be output externally.
Abstract:
An optical receiver includes: an optical demultiplexer to demultiplex an optical signal in which a plurality of wavelengths is multiplexed and divide the optical signal into optical signals corresponding to the plurality of wavelengths, respectively; a reflector to change a progress direction of the divided optical signals; an optical coupling lens including, in an array form, light transmission lenses through which the divided optical signals are transmitted, respectively; a plurality of photodetectors to mount on a photodiode (PD) substrate provided on the optical coupling lens, receive the divided optical signals that are transmitted through the light transmission lenses of the optical coupling lens, respectively, and convert the received optical signals to electrical signals; and a plurality of trans impedance amplifiers provided at desired intervals to electrically connect to the plurality of photodetectors through wire bonding and amplify the received plurality of electrical signals to be a desired magnitude.
Abstract:
An optical transmitter includes an optical modulator configured to modulate an optical signal, a dual-stage space switch configured to receive, as an input, the modulated optical signal from the optical modulator, and output ports configured to control light outputs based on an operation of the dual-stage space switch.
Abstract:
An optical transmitter for generating a multi-level optical signal and a method therefore are provided. The optical transmitter includes an optical power splitter configured to split one optical signal into N paths, N optical intensity modulators configured to modulate the split optical signals into binary optical signals, and an optical power combiner configured to combine the intensity-modulated optical signals to generate a multi-level optical signal having 2N levels.