Abstract:
An optical signal transmission apparatus generates a multi-level optical signal from a multi-level electric signal. The optical signal transmission apparatus detects, based on a supervisory signal generated from an optical signal, an electric-to-optical (E/O) conversion characteristic of an E/O converter configured to convert an electric signal into an optical signal. For example, when the E/O converter generates a multi-level optical signal from a multi-level electric signal based on a bias signal, the optical signal transmission apparatus determines a correspondence relationship between the bias signal and the optical signal. The optical signal transmission apparatus adjusts a use range of intensities of the bias signal based on the determined correspondence relationship so that the E/O converter may linearly operate.
Abstract:
A method for measuring a wavelength channel tuning time by using an optical filter that converts a change of an output wavelength of a tunable device into an optical intensity change, and a system thereof. The system for measuring a wavelength channel tuning time includes: an optical filter set configured to convert a wavelength change of an optical tunable device into an optical output intensity change; at least one or more optical electric converters configured to convert the optical output intensity change output by the optical filter set into an electric signal; and a controller configured to generate a wavelength change command applied to the tunable device, so as to calculate a wavelength channel tuning time of the tunable device by using the wavelength change command and the electric signal output by the optical electric converter.
Abstract:
An optical demultiplexing device includes a demultiplexer configured to demultiplex an input light into lights of different wavelength bands, and output the lights of different wavelength bands in a first direction and a second direction, and a detector configured to detect the light output in the first direction and the light output in the second direction.
Abstract:
A tunable optical network unit (ONU) for a multi-wavelength passive optical network (MW PON) system and an operation method thereof are provided. The tunable ONU includes a cyclic tunable filter configured to have cyclic wavelength transmission properties that allow all wavelength channels of both a downstream signal and an upstream signal and to vary a wavelength to pass therethrough; a wavelength splitter configured to split an upstream signal wavelength band and a downstream signal wavelength band; a photodetector element configured to detect a downstream signal that is transmitted through the wavelength splitter, passing through the cyclic tunable filter which is aligned to a specific downstream signal wavelength channel; and a tunable transmitter configured to output to the wavelength transmitter an upstream signal of a wavelength channel that is determined based on an aligned downstream signal wavelength channel of the cyclic tunable filter.
Abstract:
An optical receiver includes: an optical demultiplexer to demultiplex an optical signal in which a plurality of wavelengths is multiplexed and divide the optical signal into optical signals corresponding to the plurality of wavelengths, respectively; a reflector to change a progress direction of the divided optical signals; an optical coupling lens including, in an array form, light transmission lenses through which the divided optical signals are transmitted, respectively; a plurality of photodetectors to mount on a photodiode (PD) substrate provided on the optical coupling lens, receive the divided optical signals that are transmitted through the light transmission lenses of the optical coupling lens, respectively, and convert the received optical signals to electrical signals; and a plurality of trans impedance amplifiers provided at desired intervals to electrically connect to the plurality of photodetectors through wire bonding and amplify the received plurality of electrical signals to be a desired magnitude.
Abstract:
Provided is a device and method for detecting an optical signal. The optical signal detecting device may include an optical de-multiplexer configured to de-multiplex an input optical signal to optical signals of different wavelengths; an optical coupling lens configured to allow the optical signals of different wavelengths to be incident; an optical signal reflector configured to reflect the optical signals of different wavelengths emitted from the optical couple lens; and an optical detector configured to detect the reflected optical signals of different wavelengths.
Abstract:
An optical signal detecting apparatus and method. The optical signal detecting apparatus includes an optical demultiplexer configured to demultiplex an input optical signal into a first optical signal having a first band wavelength and a second optical signal having a second band wavelength, a first optical detector configured to detect the first optical signal, and a second optical detector configured to detect the second optical signal, and the optical demultiplexer, the first optical detector, and the second optical detector may be provided in a TO-CAN package.
Abstract:
Provided is an external cavity laser using a multilayered thin film filter and an optical transmitter having the same. The external cavity laser may include a semiconductor laser diode to output an optical signal, a lens to cause the optical signal output from the semiconductor laser diode to converge, a multilayered thin film filter to receive the optical signal passed through the lens and to pass the optical signal in a bandpass wavelength range, and a partial reflector to transmit the optical signal transmitted through the multilayered thin film filter to an optical fiber.
Abstract:
A converged passive optical network (CPON) and a data transmission method are disclosed. The CPON is a combination of a time division multiple access-passive optical network (TDMA-PON) and an orthogonal frequency division multiple access-passive optical network (OFDMA-PON) and is able to dynamically controlling a bandwidth for upstream signal transmission through allocation of multiple subcarriers to each single optical network unit (ONU).
Abstract:
A modulation method of an optical modem and a signal transmission apparatus performing the method are disclosed. The modulation method of the optical modem includes an optical interface providing a signal to a light source, a photo detector receiving reflected light by an optical link when output light from the light source based on the provided signal is reflected by the optical link, the photo detector measuring and determining characteristics of the optical link using the reflected light, and the optical modem determining a power level and a modulation method for each subcarrier based on the characteristics of the optical link.