Abstract:
A large capacity optical transceiver module includes: an optical transmitter configured to convert electric signals input from an external source into optical signals to transmit the converted signals, in which the electric signals are directly modulated into optical signals in a plurality of sub groups to be multiplexed; and an optical receiver configured to receive optical signals from the external source, and to convert the received optical signals into electric signals to output the converted signals, in which the optical signals are demultiplexed in a plurality of sub groups to be converted into electric signals.
Abstract:
An optical multiplexer including an optical waveguide block including a plurality of waveguides for adjusting an optical path of the plurality of optical signals. Optical signals generated in light sources having different wavelengths are input to ports of one side that is an input end of the optical waveguide block, propagated through waveguides connected to the ports, and output to ports of another side that is an output end of the optical wavelength block. Intervals between the waveguides decrease in a direction from the input end to the output end. Intervals between the ports of the input end are smaller than intervals between the ports of the output end. The optical waveguide block has a structure in which at least one layer having at least one waveguide is laminated.
Abstract:
An optical demultiplexing device includes a demultiplexer configured to demultiplex an input light into lights of different wavelength bands, and output the lights of different wavelength bands in a first direction and a second direction, and a detector configured to detect the light output in the first direction and the light output in the second direction.
Abstract:
A photodetector is provided. The photodetector includes first metal layers in which optical signals are converted into electric signals; first vias formed between the first metal layers and doped areas which include doped areas on both ends of an optical waveguide and a doped area on a growing portion, which absorbs a light signal transmitted through the optical waveguide; second metal layer in which optical signals are converted into electric signals; and second vias formed between the first metal layers and the second metal layers.
Abstract:
A flexible printed circuit board (FPCB) includes at least one signal pad part disposed at each of a top and bottom of a flexible substrate base and configured to include an upper signal pad and a lower signal pad and a through hole formed at a portion corresponding to a signal via, a signal line disposed at the top of the substrate base, and extending from the upper signal pad along a length direction of the substrate base, an upper ground pad disposed at the top of the substrate base to be separated from the upper signal pad and the signal line near the upper signal pad, and a lower ground pad disposed at the bottom of the substrate base to be separated from the lower signal pad near the lower signal pad, and connected to the upper ground pad through a ground via.
Abstract:
A bidirectional optical transceiver module includes an optical Tx block including a light source configured to output an optical Tx signal; an optical Rx block provided in parallel to the optical Tx block and including a PD configured to receive an optical Rx signal; a wavelength distributor configured to change a travel path of the optical Tx signal; an optical filter provided on a predetermined area of a first surface of the wavelength distributor adjacent to the optical Tx or Rx block and configured to transmit the optical Rx signal and reflect the optical Tx signal; a first lens provided between the optical Tx block and the wavelength distributor; a second lens provided between the optical Rx block and the wavelength distributor; and a third lens configured to output the optical Tx signal to outside and output the optical Rx signal from the outside to the wavelength distributor.
Abstract:
An optical signal transmission apparatus generates a multi-level optical signal from a multi-level electric signal. The optical signal transmission apparatus detects, based on a supervisory signal generated from an optical signal, an electric-to-optical (E/O) conversion characteristic of an E/O converter configured to convert an electric signal into an optical signal. For example, when the E/O converter generates a multi-level optical signal from a multi-level electric signal based on a bias signal, the optical signal transmission apparatus determines a correspondence relationship between the bias signal and the optical signal. The optical signal transmission apparatus adjusts a use range of intensities of the bias signal based on the determined correspondence relationship so that the E/O converter may linearly operate.
Abstract:
A directly modulated multi-level optical signal generator and a method thereof are provided. The multi-level optical signal generator includes N number of direct modulation lasers (DMLs) configured to directly modulate source light into a 2-level optical signal, and an optical power combiner configured to combine N number of 2-level optical signals directly modulated by the respective DMLs to generate a 2N-level optical signal.
Abstract:
Provided are a hybrid optical coupling module and a manufacturing method thereof.The hybrid optical coupling module includes an optical unit configured to include an optical transmission means that transmits an optical signal, and an array lens that is bonded at a point where the optical signal of the optical transmission means is output and focuses the output optical signal, and an electrical unit configured to receive the optical signal focused through the array lens and convert the received optical signal into an electrical signal. Here, an alignment mark is formed on the optical transmission means and the array lens so that the array lens is bonded at the point where the optical signal of the optical transmission means is output.
Abstract:
An optical fiber coupler includes a plurality of optical fibers parallel to each other in a first direction, an optical fiber array block (FAB) configured to maintain a constant center-to-center distance between the plurality of optical fibers, and an optical waveguide block including a plurality of optical waveguides coupled to the plurality of optical fibers, respectively, and configured to transfer optical signals transmitted through the plurality of optical fibers connected to the optical FAB in a second direction in which a photonics chip is placed and which is different from the first direction.