Abstract:
In the zoom lens, a first optical system is formed on the magnification side, and a second optical system is formed on the reduction side, with the intermediate image formed between the first optical system and the second optical system. The second optical system consists of, in order from the magnification side, a first lens group that has a positive power, a second lens group that has a positive power, a third lens group that has a positive or negative power, and a fourth lens group that has a positive power. During zooming, the second lens group and the third lens group are moved by changing spacings between the groups adjacent to each other in a direction of an optical axis, and the fourth lens group remains stationary with respect to the reduction side imaging plane.
Abstract:
The present invention provides an imaging device and a focusing control method capable of performing reliability determination of a phase difference AF at high speed. A phase difference AF processing unit (19) performs a correlation operation with respect to detection signal groups in first pairs P1, and performs a correlation operation with respect to detection signal groups in second pairs P2. A system control unit (11) compares a difference between a first correlation amount M1 which is a minimum correlation amount between the detection signal groups in the first pairs P1, among obtained results of the correlation operation with respect to the first pairs P1 and a second correlation amount M2 which is a minimum correlation amount between the detection signal groups in the second pairs P2, among obtained results of the correlation operation with respect to the second pairs P2 with a threshold value TH, to thereby determine a reliability of a focusing control based on the phase difference AF method.
Abstract:
The camera main body 200 stores sensitivity ratio data indicating a sensitivity ratio of a pixel 51R in the position and an imaging pixel 51 which is adjacent to the pixel 51R and a sensitivity ratio of a pixel 51L in the position and a pixel 51 which is adjacent to the pixel 51L, for every information of the different incident light ray angles in the arbitrary position of a light receiving surface 50 in an X direction. The system control unit 11 obtains information of the incident light ray angle in two positions on the light receiving surface 50 corresponding to the set optical condition and corrects the level difference of the output signals of the pixels 51R and 51L using the sensitivity ratio data corresponding to the obtained incident light ray angle.
Abstract:
It is an imaging element in which pixels which are photoelectric conversion elements are placed at respective square lattice positions, in which, when, in a predetermined region where pixels of the imaging element are placed, a plurality of pairs are arranged in a first line which is any one line among lines and a second line which is parallel to the first line, each pair having pair pixels which are first and second phase difference detection pixels placed adjacent to each other to detect a phase difference among the pixels of the imaging element, the pairs in the first line are placed to be spaced apart from each other by at least two pixels, and the pairs in the second line are placed at positions, which correspond to positions where the pair pixels in the first line are spaced apart from each other.
Abstract:
An image display device includes a beam splitter that splits an incident light entering from a subject side, an imaging device that converts a first optical image generated by an one-side incident light split by the beam splitter into an electrical signal and outputs the converted electrical signal as a capture image, a synthesis image generating unit that generates an electronic information image, a display panel that displays the electronic information image, and an optical prism that emits an optical image of the electronic information image projected from the display panel to be superimposed on a second optical image generated by the other-side split incident light.
Abstract:
An image capturing element is provided with: a color filter in which a basic arrangement pattern having first and second arrangement patterns arranged to be symmetrical about a point is repeated. The first arrangement pattern comprises first filters arranged on pixels in 2×2 arrangement located at the upper-left portion and a pixel located at the lower-right in a 3×3 pixel square arrangement, second filters arranged on the center and lower end lines in the vertical direction of the square arrangement, and third filters arranged on the center and right lines in the horizontal direction of the square arrangement. The second arrangement pattern comprises the first filters having the same arrangement as in the first arrangement pattern, and the second filters and the third filters having the arrangements interchanged with each other compared to the arrangements in the first arrangement pattern.
Abstract:
The precision of phase difference AF control is raised.An image pickup device includes a color filter that is provided with repeatedly disposed basic array patterns configured with a first array pattern and a second array pattern disposed symmetrically about a point, wherein the first array pattern includes a first filter placed over 2×2 pixels at the top left and a pixel at the bottom right of a 3×3 square array, a second filter placed over a right end pixel of a vertical direction center line of the square array and over a left end pixel a lower edge line, and a third filter placed over a pixel at the right end of the vertical direction upper edge line of the square array and over a center pixel of the lower edge line, and the second array pattern has the same placement of the first filter as that in the first array pattern and has a placement of the second filter and a placement of the third filter swapped over therefrom; and phase difference detection pixels that are placed at positions corresponding to 2 pixels that are adjacent in the horizontal direction out of the 2×2 pixels of at least one side of the upper side or lower side disposed first and second array patterns out of the 2 first array patterns and the 2 second array patterns configuring the basic array pattern.
Abstract:
A projection apparatus, a projection method, a control device, and a computer readable medium storing a control program that enable an instruction operation for geometric processing to be easily performed are provided. A projection portion projects a projection image generated by a light modulation portion based on an input image. In a case of performing geometric processing of the projection image in a non-display region other than a display region of the projection image within a displayable region of the light modulation portion, a control device performs a control of projecting a support image showing at least a part of the displayable region from the projection portion.
Abstract:
A zoom lens forms an intermediate image at a position conjugate to a reduction side imaging plane and forms the intermediate image again on a magnification side imaging plane. The zoom lens includes a plurality of lens groups including at least two movable lens groups, which move by changing spacings between the groups adjacent to each other in a direction of an optical axis during zooming, at a position closer to the reduction side than the intermediate image. Among the plurality of lens groups, a final lens group closest to the reduction side has a positive refractive power, and remains stationary with respect to the reduction side imaging plane during zooming. The zoom lens satisfies predetermined conditional expressions (1) and (2) about the focal lengths of the movable lens groups.
Abstract:
A projection system includes a set of a first projection apparatus and a first imaging unit and a set of a second projection apparatus and a second imaging unit. A first projection range of the first projection apparatus and a second projection range of the second projection apparatus have an overlapping part. A control device of the projection system determines whether or not an operation for an operating part projected to the overlapping part is performed based on a captured image of the first projection range and a captured image of the second projection range, and executes a predetermined control in a case where it is determined that the operation is performed.