Abstract:
A power plant includes a turbine having a plurality of turbine stages and an extraction port in fluid communication with one or more of the turbine stages. The extraction port provides a flow path for a stream of combustion gas to flow out of the turbine. An exhaust duct is disposed downstream from the turbine and receives exhaust gas from the turbine. The exhaust duct is fluid communication with the extraction port. A coolant injection system injects a coolant into the stream of combustion gas to provide cooled combustion gas to the exhaust duct. The cooled combustion gas flows into the exhaust duct at a temperature that is higher than a temperature of the exhaust gas, thereby increasing the temperature of the exhaust gas within the exhaust duct. The increase in thermal energy may be used to produce steam downstream from the exhaust duct.
Abstract:
A power plant includes a first gas turbine and a second gas turbine. The first gas turbine includes a turbine extraction port that is in fluid communication with a hot gas path of the turbine and an exhaust duct that receives exhaust gas from the turbine outlet. The power plant further includes a first gas cooler having a primary inlet fluidly coupled to the turbine extraction port, a secondary inlet fluidly coupled to a coolant supply system and an outlet in fluid communication with the exhaust duct. The first gas cooler provides a cooled combustion gas to the exhaust duct which mixes with the exhaust gas to provide an exhaust gas mixture to a first heat exchanger downstream from the exhaust duct. At least one of a compressor and a turbine of the second gas turbine are in fluid communication with the outlet of the first gas cooler.
Abstract:
A power plant includes a compressor, a combustor downstream from the compressor and a turbine disposed downstream from the combustor. The compressor includes a compressor extraction port. The turbine includes a turbine extraction port that is in fluid communication with a hot gas path of the turbine and which provides a flow path for a stream of combustion gas to flow out of the turbine. An exhaust duct is disposed downstream from the turbine and receives exhaust gas from the turbine. An ejector coupled to the turbine extraction port and to the compressor extraction port cools the stream of combustion gas upstream from the exhaust duct. The cooled combustion gas flows into the exhaust duct at a higher temperature than the exhaust gas and mixes with the exhaust gas within the exhaust duct to provide a heated exhaust gas mixture to a heat exchanger downstream from the exhaust duct.
Abstract:
A power plant includes a first gas turbine and a second gas turbine. The first gas turbine includes a turbine extraction port that is in fluid communication with a hot gas path of the turbine and an exhaust duct that receives exhaust gas from the turbine outlet. The power plant further includes a first gas cooler having a primary inlet fluidly coupled to the turbine extraction port, a secondary inlet fluidly coupled to a coolant supply system and an outlet in fluid communication with the exhaust duct. The first gas cooler provides a cooled combustion gas to the exhaust duct which mixes with the exhaust gas to provide an exhaust gas mixture to a first heat exchanger downstream from the exhaust duct. The first gas cooler is also in fluid communication with a combustor of the second gas turbine.
Abstract:
A power plant includes an exhaust duct that receives an exhaust gas from an outlet of the turbine outlet and an ejector having a primary inlet fluidly coupled to a compressor extraction port. The ejector receives a stream of compressed air from the compressor via the compressor extraction port. The power plant further includes a static mixer having a primary inlet fluidly coupled to a turbine extraction port, a secondary inlet fluidly coupled to an outlet of the ejector and an outlet that is in fluid communication with the exhaust duct. A stream of combustion gas flows from a hot gas path of the turbine and into the inlet of the static mixer via the turbine extraction port. The static mixer receives a stream of cooled compressed air from the ejector to cool the stream of combustion gas upstream from the exhaust duct. The cooled combustion gas mixes with the exhaust gas within the exhaust duct to provide a heated exhaust gas mixture to a heat exchanger.
Abstract:
A power generation system includes: a first gas turbine system including a first turbine component, a first integral compressor and a first combustor to which air from the first integral compressor and fuel are supplied, the first combustor arranged to supply hot combustion gases to the first turbine component, and the first integral compressor having a flow capacity greater than an intake capacity of the first combustor and/or the first gas turbine component, creating an excess air flow. A second gas turbine system may include similar components to the first except but without excess capacity in its compressor. A control valve system controls flow of the excess air flow from the first gas turbine system to the second gas turbine system. A heat exchanger may be coupled to the excess air flow path for exchanging heat with the excess air flow.
Abstract:
A power generation system includes: a first gas turbine system including a first turbine component, a first integral compressor and a first combustor to which air from the first integral compressor and fuel are supplied, the first combustor arranged to supply hot combustion gases to the first turbine component, and the first integral compressor having a flow capacity greater than an intake capacity of the first combustor and/or the first turbine component, creating an excess air flow. A second gas turbine system may include similar components to the first except but without excess capacity in its compressor. A control valve system controls flow of the excess air flow to the second gas turbine system. An eductor may be positioned in the excess air flow path for using the excess air flow as a motive fluid to augment the excess air flow to the second gas turbine with additional air.
Abstract:
A turbomachine system includes a compressor portion having at least one compressor extraction, a turbine portion operatively connected to the compressor portion, and a combustor assembly including at least one combustor fluidically connected to the compressor portion and the turbine portion. A heat recovery steam generator (HRSG) is fluidically connected to the turbine portion, and an air inlet system is fluidically connected to the compressor portion. An inlet bleed heat (IBH) system is fluidically connected to each of the compressor portion, the air inlet system and the HRSG. An inlet bleed heat (IBH) system includes a first conduit having a first valve fluidically connecting the compressor extraction and the air inlet system, and a second conduit including a second valve connecting one of the HRSG and a secondary stream source with the first conduit.