Component with cooling passage for a turbine engine

    公开(公告)号:US11512599B1

    公开(公告)日:2022-11-29

    申请号:US17491828

    申请日:2021-10-01

    Abstract: An apparatus and method for an engine component for a turbine engine having a working airflow separated into a cooling airflow and a combustion airflow. The engine component including a wall defining an interior and having an outer surface. A tip wall spanning first and second sides of the wall to close the interior. A tip rail extending from the tip wall and having an inner tip rail surface, which in combination with the tip wall, at least partially bounds a region defining a plenum. A rim formed in at least one of the outer surface and inner tip rail surface.

    COMPONENT WITH COOLING PASSAGE FOR A TURBINE ENGINE

    公开(公告)号:US20220333490A1

    公开(公告)日:2022-10-20

    申请号:US17231263

    申请日:2021-04-15

    Abstract: An airfoil for a turbine engine having a working airflow separated into a cooling airflow and a combustion airflow, the airfoil comprising a wall defining an interior and having an outer surface over which flows the combustion airflow, the outer surface defining a first side and a second side extending between a leading edge and a trailing edge to define a chord-wise direction; at least one cooling conduit located within the interior and fluidly coupled to the cooling airflow. A primary cooling passage having at least one inlet fluidly coupled to the at least one cooling conduit, a primary outlet on the outer surface. A passage connecting the at least one inlet to the primary outlet, the passage separated into a first portion and a second portion. The primary outlet spaced from the trailing edge a predetermined distance.

    Nozzle assembly with alternating inserted vanes for a turbine engine

    公开(公告)号:US11268394B2

    公开(公告)日:2022-03-08

    申请号:US16817742

    申请日:2020-03-13

    Abstract: A nozzle assembly for a gas turbine engine and methods for assembling a nozzle assembly are provided. In one example aspect, the nozzle assembly includes an outer wall and an inner wall radially spaced from the outer wall. The outer wall defines a plurality of mounting openings spaced circumferentially from one another. The inner wall defines a plurality of mounting openings spaced circumferentially from one another. The mounting openings defined by the inner wall are positioned circumferentially between adjacent mounting openings defined by the outer wall. The nozzle assembly includes vanes that are inserted through the mounting openings of the outer wall in a radially inward direction and vanes that are inserted through the mounting openings of the inner wall in a radially outward direction in an alternating manner.

    MODULATED TURBINE COMPONENT COOLING

    公开(公告)号:US20210017907A1

    公开(公告)日:2021-01-21

    申请号:US17060162

    申请日:2020-10-01

    Abstract: Features and methods for modulating a flow of cooling fluid to gas turbine engine components are provided. In one embodiment, an airfoil is provided having a flow modulation insert for modulating a flow of cooling fluid received in a cavity of a body of the airfoil. In another embodiment, a shroud is provided comprising a cooling channel for a flow of cooling fluid and an insert that varies in position to modulate the flow of cooling fluid through the cooling channel. In yet another embodiment, a method for operating a gas turbine engine having a cooling circuit for cooling one or more components of the gas turbine engine comprises increasing power provided to the engine and decreasing power provided to the engine to modulate a position of a flow modulation insert located in the cooling circuit and thereby modulate the flow of cooling fluid through the cooling circuit.

    Ceramic matrix composite airfoil cooling

    公开(公告)号:US10605095B2

    公开(公告)日:2020-03-31

    申请号:US15151860

    申请日:2016-05-11

    Abstract: Airfoils for gas turbine engines are provided. In one embodiment, an airfoil formed from a ceramic matrix composite material includes opposite pressure and suction sides extending radially along a span and defining an outer surface of the airfoil. The airfoil also includes opposite leading and trailing edges extending radially along the span. The pressure and suction sides extend axially between the leading and trailing edges. The leading edge defines a forward end of the airfoil, and the trailing edge defining an aft end of the airfoil. Further, the airfoil includes a trailing edge portion defined adjacent the trailing edge at the aft end of the airfoil; a plenum defined within the airfoil forward of the trailing edge portion; and a cooling passage defined within the trailing edge portion proximate the suction side. Methods for forming airfoils for gas turbine engines also are provided.

Patent Agency Ranking