Abstract:
A time of flight camera system is described. The time of flight camera system includes an illuminator. The illuminator has a movable optical component to scan light within the time-of-flight camera's field of view to illuminate a first region within the field of view that is larger than a second region within the time-of-flight camera's field of view that is illuminated at any instant by the light. The illuminator also includes an image sensor to determine depth profile information within the first region using time-of-flight measurement techniques.
Abstract:
An image sensor is described having a pixel array. The pixel array has a unit cell that includes visible light photodiodes and an infra-red photodiode. The visible light photodiodes and the infra-red photodiode are coupled to a particular column of the pixel array. The unit cell has a first capacitor coupled to the visible light photodiodes to store charge from each of the visible-light photodiodes. The unit cell has a readout circuit to provide the first capacitor's voltage on the particular column. The unit cell has a second capacitor that is coupled to the infra-red photodiode through a first transfer gate transistor to receive charge from the infra-red photodiode during a time-of-flight exposure. The first capacitor is coupled to the infra-red photodiode through a second transfer gate transistor to receive charge from the infra-red photodiode during the time-of-flight exposure.
Abstract:
An immersive video teleconferencing system may include a transparent display and at least one image sensor operably coupled to the transparent display. The at least one image sensor may be multiple cameras included on a rear side of the transparent display, or a depth camera operably coupled to the transparent display. Depth data may be extracted from the images collected by the at least one image sensor, and an image of a predetermined subject may be segmented from a background of the collected images based on the depth data. The image of the segmented predetermined subject may also be scaled based on the depth data. The image of the scaled segmented predetermined subject may be transmitted to a remote transparent display at a remote location, and displayed on the remote transparent display such that a background surrounding the displayed image of the remote location is visible through the transparent display, so that the predetermined subject appears to be physically located at the remote location.
Abstract:
A time of flight camera system is described. The time of flight camera system includes an illuminator. The illuminator has a movable optical component to scan light within the time-of-flight camera's field of view to illuminate a first region within the field of view that is larger than a second region within the time-of-flight camera's field of view that is illuminated at any instant by the light. The illuminator also includes an image sensor to determine depth profile information within the first region using time-of-flight measurement techniques.
Abstract:
An integrated stacked and/or abutted sensor, memory and processing hardware camera solution is described. The sensor is to receive light from an image and generate electronic pixels from the light. The processing hardware is to process the electronic pixels to: a) recognize a scene from the image in a lower quality image mode; b) trigger actions by the camera solution in response to the recognition of the scene, the actions including: i) transitioning the camera solution from the lower quality image mode to a higher quality image mode to capture a higher quality version of the image; and, ii) forwarding from the camera solution important imagery and not forwarding from the camera solution unimportant imagery.
Abstract:
An apparatus is described that includes a camera system having a time-of-flight illuminator. The time of flight illuminator has a light source and one or more tiltable mirror elements. The one or more tiltable mirror elements are to direct the illuminator's light to only a region within the illuminator's field of view.
Abstract:
An apparatus is described that includes an image sensor having a first output port and a second output port. The first output port is to transmit a first image stream concurrently with a second image stream transmitted from the second output port.