Abstract:
An apparatus is described that includes a camera system having a time-of-flight illuminator. The time of flight illuminator has a light source and one or more tiltable mirror elements. The one or more tiltable mirror elements are to direct the illuminator's light to only a region within the illuminator's field of view.
Abstract:
An apparatus is described having an integrated two-dimensional image capture and three-dimensional time-of-flight depth capture system. The integrated two-dimensional image capture and three-dimensional time-of-flight depth capture system includes an illuminator to generate light for the time-of-flight depth capture system. The illuminator includes an array of light sources and a movable lens assembly. The movable lens assembly is to movably direct an emitted beam of the light to one of any of a plurality of locations within the illuminator's field of view to form an illuminated region of interest within the illuminator's field of view. The illuminated region of interest has a size that is smaller than the illuminator's field of view.
Abstract:
An apparatus is described that includes a camera. The camera has a beam splitter to impose different optical paths for visible light and infra red light received by the camera. The camera has an infra red light detector to detect the infra red light and a visible light detector to detect the visible light.
Abstract:
An apparatus is described. The apparatus includes a camera comprising a beam splitter to impose different optical paths for visible light and infra red light received by the camera. The camera also includes an infra red light detector to detect the infra red light and a visible light detector to detect the visible light, wherein, the different optical paths include an optical path having more than one internal reflection within the beam splitter.
Abstract:
An apparatus is described having an integrated two-dimensional image capture and three-dimensional time-of-flight depth capture system. The integrated two-dimensional image capture and three-dimensional time-of-flight depth capture system includes an illuminator to generate light for the time-of-flight depth capture system. The illuminator includes an array of light sources and a movable lens assembly. The movable lens assembly is to movably direct an emitted beam of the light to one of any of a plurality of locations within the illuminator's field of view to form an illuminated region of interest within the illuminator's field of view. The illuminated region of interest has a size that is smaller than the illuminator's field of view.
Abstract:
An apparatus is described that includes an integrated two-dimensional image capture and three-dimensional time-of-flight depth capture system. The three-dimensional time-of-flight depth capture system includes an illuminator to generate light. The illuminator includes arrays of light sources. Each of the arrays is dedicated to a particular different partition within a partitioned field of view of the illuminator.
Abstract:
A time of flight camera system is described. The time of flight camera system includes an illuminator. The illuminator has a movable optical component to scan light within the time-of-flight camera's field of view to illuminate a first region within the field of view that is larger than a second region within the time-of-flight camera's field of view that is illuminated at any instant by the light. The illuminator also includes an image sensor to determine depth profile information within the first region using time-of-flight measurement techniques.
Abstract:
A time of flight camera system is described. The time of flight camera system includes an illuminator. The illuminator has a movable optical component to scan light within the time-of-flight camera's field of view to illuminate a first region within the field of view that is larger than a second region within the time-of-flight camera's field of view that is illuminated at any instant by the light. The illuminator also includes an image sensor to determine depth profile information within the first region using time-of-flight measurement techniques.
Abstract:
The present disclosure discusses an improved optical transceiver. The optical transceiver of the present disclosure includes an optical transmitter and an optical receiver that are spatially separated. In some implementations, the optical receiver and optical transmitter are staggered from one another. Each of the optical receiver and the optical transmitter and housed within a separate optical lens. In some implementations, the separation of the components reduces mechanical, thermal, and electrical cross talk between the optical transmitter and the optical receiver. The separation of the components can also ease the constraints of the optical alignment between the optical transmitter and the optical receiver and each of their respective lenses.
Abstract:
An apparatus is described that includes a camera system having a time-of-flight illuminator. The time of flight illuminator has a light source and one or more tiltable mirror elements. The one or more tiltable mirror elements are to direct the illuminator's light to only a region within the illuminator's field of view.