Threshold Confidence Levels for Extracted Card Data
    41.
    发明申请
    Threshold Confidence Levels for Extracted Card Data 审中-公开
    提取卡数据的阈值置信度

    公开(公告)号:US20150006360A1

    公开(公告)日:2015-01-01

    申请号:US14026738

    申请日:2013-09-13

    Applicant: GOOGLE INC.

    Abstract: Comparing extracted card data from a continuous scan comprises receiving, by one or more computing devices, a digital scan of a card; obtaining a plurality of images of the card from the digital scan of the physical card; performing an optical character recognition algorithm on each of the plurality of images; comparing results of the application of the optical character recognition algorithm for each of the plurality of images; determining if a configured threshold of the results for each of the plurality of images match each other; and verifying the results when the results for each of the plurality of images match each other. Threshold confidence level for the extracted card data can be employed to determine the accuracy of the extraction. Data is further extracted from blended images and three-dimensional models of the card. Embossed text and holograms in the images may be used to prevent fraud.

    Abstract translation: 比较来自连续扫描的提取的卡数据包括由一个或多个计算设备接收卡的数字扫描; 从所述物理卡的数字扫描中获取所述卡的多个图像; 对所述多个图像中的每一个执行光学字符识别算法; 比较针对所述多个图像中的每一个的所述光学字符识别算法的应用结果; 确定所述多个图像中的每一个的结果的配置阈值是否彼此匹配; 以及当多个图像中的每一个的结果彼此匹配时验证结果。 可以采用提取的卡数据的阈值置信水平来确定提取的准确性。 从混合图像和卡片的三维模型进一步提取数据。 图像中的压纹文字和全息图可能被用来防止欺诈。

    PAYMENT CARD OCR WITH RELAXED ALIGNMENT
    42.
    发明申请
    PAYMENT CARD OCR WITH RELAXED ALIGNMENT 有权
    付款卡OCR与放松对齐

    公开(公告)号:US20150003733A1

    公开(公告)日:2015-01-01

    申请号:US14462711

    申请日:2014-08-19

    Applicant: GOOGLE INC.

    Abstract: Extracting financial card information with relaxed alignment comprises a method to receive an image of a card, determine one or more edge finder zones in locations of the image, and identify lines in the one or more edge finder zones. The method further identifies one or more quadrilaterals formed by intersections of extrapolations of the identified lines, determines an aspect ratio of the one or more quadrilateral, and compares the determined aspect ratios of the quadrilateral to an expected aspect ratio. The method then identifies a quadrilateral that matches the expected aspect ratio and performs an optical character recognition algorithm on the rectified model. A similar method is performed on multiple cards in an image. The results of the analysis of each of the cards are compared to improve accuracy of the data.

    Abstract translation: 以轻松对准的方式提取金融卡信息包括接收卡的图像的方法,在图像的位置确定一个或多个边缘查找器区域,并识别一个或多个边缘查找器区域中的线。 该方法还识别由所识别的线的外插的交点形成的一个或多个四边形,确定一个或多个四边形的纵横比,并将确定的四边形的纵横比与预期的纵横比进行比较。 然后,该方法识别与预期宽高比匹配的四边形,并在整流模型上执行光学字符识别算法。 在图像中的多个卡上执行类似的方法。 比较每个卡的分析结果,提高数据的准确性。

    EXTRACTING CARD DATA WITH LINEAR AND NONLINEAR TRANSFORMATIONS
    43.
    发明申请
    EXTRACTING CARD DATA WITH LINEAR AND NONLINEAR TRANSFORMATIONS 有权
    提取具有线性和非线性变换的卡数据

    公开(公告)号:US20150003732A1

    公开(公告)日:2015-01-01

    申请号:US14059108

    申请日:2013-10-21

    Applicant: GOOGLE INC.

    Abstract: Embodiments herein provide computer-implemented techniques for allowing a user computing device to extract financial card information using optical character recognition (“OCR”). Extracting financial card information may be improved by applying various classifiers and other transformations to the image data. For example, applying a linear classifier to the image to determine digit locations before applying the OCR algorithm allows the user computing device to use less processing capacity to extract accurate card data. The OCR application may train a classifier to use the wear patterns of a card to improve OCR algorithm performance. The OCR application may apply a linear classifier and then a nonlinear classifier to improve the performance and the accuracy of the OCR algorithm. The OCR application uses the known digit patterns used by typical credit and debit cards to improve the accuracy of the OCR algorithm.

    Abstract translation: 这里的实施例提供了计算机实现的技术,用于允许用户计算设备使用光学字符识别(“OCR”)提取金融卡信息。 可以通过对图像数据应用各种分类器和其他变换来提高金融卡信息的提取。 例如,在应用OCR算法之前,对图像应用线性分类器以确定数字位置允许用户计算设备使用较少的处理能力来提取准确的卡数据。 OCR应用程序可以训练分类器来使用卡的磨损模式来改善OCR算法性能。 OCR应用可以应用线性分类器,然后应用非线性分类器来提高OCR算法的性能和准确性。 OCR应用程序使用典型的信用卡和借记卡使用的已知数字模式来提高OCR算法的准确性。

    EXTRACTION OF FINANCIAL ACCOUNT INFORMATION FROM A DIGITAL IMAGE OF A CARD
    44.
    发明申请
    EXTRACTION OF FINANCIAL ACCOUNT INFORMATION FROM A DIGITAL IMAGE OF A CARD 有权
    从卡的数字图像中提取财务帐户信息

    公开(公告)号:US20140270329A1

    公开(公告)日:2014-09-18

    申请号:US13798026

    申请日:2013-03-12

    Applicant: GOOGLE INC.

    Abstract: Capturing information from payment instruments comprises receiving, using one or more computer devices, an image of a back side of a payment instrument, the payment instrument comprising information imprinted thereon such that the imprinted information protrudes from a front side of the payment instrument and the imprinted information is indented into the back side of the payment instrument; extracting sets of characters from the image of the back side of the payment instrument based on the imprinted information indented into the back side of the payment instrument and depicted in the image of the back side of the payment instrument; applying a first character recognition application to process the sets of characters extracted from the image of the back side of the payment instrument; and categorizing each of the sets of characters into one of a plurality of categories relating to information required to conduct a payment transaction.

    Abstract translation: 从付款工具获取信息包括:使用一个或多个计算机设备接收支付工具的背面的图像,所述支付工具包括印在其上的信息,使得所述打印信息从所述支付工具的前侧突出并且所述印记 信息缩进到支付工具的背面; 基于所述支付工具背面的印刷信息,从所述支付工具的背面图像中提取出的字符集,并以所述支付工具的背面的图像形式示出; 应用第一字符识别应用来处理从所述支付工具的背面的图像提取的字符集; 以及将每个所述字符集分类为与执行支付交易所需的信息有关的多个类别中的一个。

    Comparing An Extracted User Name with Stored User Data
    47.
    发明申请
    Comparing An Extracted User Name with Stored User Data 审中-公开
    将提取的用户名与存储的用户数据进行比较

    公开(公告)号:US20170046668A1

    公开(公告)日:2017-02-16

    申请号:US14827330

    申请日:2015-08-16

    Applicant: GOOGLE INC.

    Abstract: An application extracts a user name from a financial card image using optical character recognition (“OCR”) and compares segments of the user name to names stored in user data to refine the extracted name. The application performs an OCR algorithm on a card image and compares an extracted name with user data. The application identifies likely matching names to the extracted name. The OCR application breaks the extracted name into one or more series of segments and compares the segments from the extracted name to segments from the stored names. The OCR application determines an edit distance between the extracted name and each potentially matching stored name. If the edit distance is below a configured threshold then the OCR application revises the extracted name to match the identified stored name. The refined name is presented to the user for verification.

    Abstract translation: 应用程序使用光学字符识别(“OCR”)从金融卡片图像中提取用户名,并将用户名的段与存储在用户数据中的名称进行比较,以优化提取的名称。 应用程序在卡片图像上执行OCR算法,并将提取的名称与用户数据进行比较。 该应用程序可识别提取的名称可能匹配的名称。 OCR应用将提取的名称分解为一个或多个片段,并将来自提取的名称的片段与存储的名称的片段进行比较。 OCR应用程序确定提取的名称和每个潜在匹配的存储名称之间的编辑距离。 如果编辑距离低于配置的阈值,则OCR应用程序将修改提取的名称以匹配所标识的存储名称。 将精简的名称呈现给用户进行验证。

    Predictive Information Retrieval
    49.
    发明申请
    Predictive Information Retrieval 有权
    预测信息检索

    公开(公告)号:US20160162556A1

    公开(公告)日:2016-06-09

    申请号:US15044568

    申请日:2016-02-16

    Applicant: Google Inc.

    Abstract: A computer-implemented method for generating results for a client-requested query involves receiving a query produced by a client communication device, generating a result for the query in response to reception of the query, determining one or more predictive follow-up requests before receiving an actual follow-up request from the client device, and initiating retrieval of information associated with the one or more predictive follow-up requests, and transmitting at least part of the result to the client device, and then transmitting to the client device at least part of the information associated with the one or more predictive follow-up requests.

    Abstract translation: 用于生成客户端请求的查询的结果的计算机实现的方法涉及接收由客户端通信设备产生的查询,响应于接收查询而产生用于查询的结果,在接收之前确定一个或多个预测性后续请求 来自客户端设备的实际后续请求,以及启动与所述一个或多个预测性后续请求相关联的信息的检索,以及将所述结果的至少一部分发送到所述客户端设备,然后至少向所述客户端设备发送 与一个或多个预测性跟踪请求相关联的信息的一部分。

    Segmentation of devanagari-script handwriting for recognition
    50.
    发明授权
    Segmentation of devanagari-script handwriting for recognition 有权
    用于识别的Devanagari-script手写的分割

    公开(公告)号:US09251412B2

    公开(公告)日:2016-02-02

    申请号:US14106893

    申请日:2013-12-16

    Applicant: Google Inc.

    CPC classification number: G06K9/00416 G06K9/344 G06K2209/013

    Abstract: Methods and systems for recognizing Devanagari script handwriting are provided. A method may include receiving a handwritten input and determining that the handwritten input comprises a shirorekha stroke based on one or more shirorekha detection criteria. Shirorekha detection criteria may be at least one criterion such as a length of the shirorekha stroke, a horizontality of the shirorekha stroke, a straightness of the shirorekha stroke, a position in time at which the shirorekha stroke is made in relation to one or more other strokes in the handwritten input, and the like. Next, one or more recognized characters may be provided corresponding to the handwritten input.

    Abstract translation: 提供了识别梵文脚本手写的方法和系统。 方法可以包括接收手写输入并且基于一个或多个shirorekha检测标准确定手写输入包括shirorekha笔划。 Shirorekha检测标准可以是至少一个标准,例如shirorekha中风的长度,shirorekha中风的水平度,shirorekha中风的平直度,相对于一个或多个其他的shirorekha中风的时间位置 手写输入中的笔画等。 接下来,可以对应于手写输入提供一个或多个识别的字符。

Patent Agency Ranking