Abstract:
A method may receive, in response to a first event, a first sensor data from a first sensor, and receive, in response to the first event, a second sensor data from a second sensor. The method may select, from among a plurality of event profiles, a first event profile. The first event profile may comprise a first condition matching the first sensor data, a second condition matching the second sensor data, and a plurality of conditions which, when met, indicate the occurrence of the first event. Conditions may include a sensor data, a time period, a user data, a sequence of conditions, or a combination of such data. The first event profile may comprise a first event notice to be provided in response to the occurrence of the first event. The method may provide the first event notice to a recipient indicated by the event profile.
Abstract:
A system and method for automatic path light control based on a detected size and classification of motion around the device using passive infrared (PIR) sensor technologies and distributed classification algorithms, and on detected light levels in and around the path area using ambient light sensor (ALS) technologies. By using such sensor data, the path light does not need to be maintained at a fixed value, which may be inadequate or inefficient at times, nor require constant user adjustments. Implementations of the disclosed subject matter enable automatic path light control that can be dynamic and automatically adjusted to fit the environment, the current user characteristics and the current user movements through the environment.
Abstract:
Systems and techniques are provided for occupancy based volume adjustment. A signal including detected locations for several persons may be received. An occupancy model may be generated based on the detected locations. A volume adjustment for a speaker may be generated based on the occupancy model and a target sound level range for each of the detected locations. The volume of the speaker may be adjusted based on the volume adjustment. A signal including a detected location of one other person may be received. A location of other speakers may be received. The occupancy model may be generated based on the detected location of the one other person. The speaker may be determined to be closer to the one other person than any of the other speakers. The volume adjustment for the speaker may be generated based in part on the location of the one other person.