Abstract:
It is possible to reduce the PAPR of an amplified signal communicated over bonded channels by applying different phase shifts to control fields communicated over the bonded channels. The phase shifts reduce the amount of constructive interaction between the control fields by shifting the peaks of the respective signals in the time domain. The control fields may include short training fields (STFs), channel estimation (CE) fields, or header fields communicated over bonded channels.
Abstract:
Embodiments are provided for implementing a CSMA-CA half window scheme in 802.11 networks or other suitable wireless networks that could benefit from such scheme. The half window scheme improves a back-off time calculation by adding a probability prediction factor. The back-off time is part of a delay time in accessing a wireless transmission medium by a station (STA). The probability prediction factor is used to adjust a contention widow (CW) used to calculate the back-off time, based on the STA's medium access probability. The STA splits the CW into two at least half windows and then chooses one of the windows according to the window's information gain for the probability prediction. The selected window is used to select a random number for the back-off time. The improved back-off time calculation reduces contention between STAs in accessing the medium.
Abstract:
Fast mobile device authentication can be achieved during inter-domain handovers between administrative domains operating under a federated service agreement using pseudonym identifications (PID). Specifically, the mobile device may derive a PID when obtaining authentication in a first wireless network, and then use the PID to obtain fast authentication in a second wireless network. The PID may be generated during an Elliptic curve Diffie-Hellman (ECDH) authentication procedure using public keys associated with the mobile device and the first wireless network. The PID (or a derivative thereof) may then be provided to an authentication server in a second wireless network for validation. The PID may be validated by the second authentication server via online or offline validation procedures. The PID can also be used as an electronic coupon for accessing the second network.
Abstract:
Signal (SIF) field capacity can be significantly increased by encoding SIG field data using two streams in accordance with a space-time block code (STBC) encoding scheme. Dual-stream SIG field encoding allows for the utilization of higher order modulation schemes, such as quadrature phase-shift keying (QPSK), which increases SIG field capacity. Dual-stream encoded SIG fields are transmitted using an omnidirectional beam to allow mobile stations to accurately decode the SIG field irrespective of their spatial location.
Abstract:
A method of auto-detection of WLAN packets includes selecting a first Golay sequence from a first pair of Golay complementary sequences associated with first packet type, each Golay sequence of the first pair of Golay complementary sequences being zero correlation zone (ZCZ) sequences with each Golay sequence of a second pair of Golay complementary sequences associated with a second packet type, and transmitting a wireless packet carrying a short training field (STF) that includes one or more instances of the first Golay sequence.
Abstract:
Transmitting, in a wireless local area network (WLAN), a second punctured coded bit sequence generated by puncturing coded data using a second puncturing pattern, wherein the coded data has previously been punctured using a first puncturing pattern to generate a first punctured coded bit sequence transmitted in the WLAN. The second puncturing pattern is different than the first puncturing pattern to cause at least some bits of the coded data that were omitted in the first punctured coded bit sequence to be included in the second punctured coded bit sequence.
Abstract:
A method is described for providing extended wireless coverage. The method includes transmitting, by a station (STA), at least a first frame including one or more short training fields (STFs) and a legacy STF, each of the one or more STFs carrying a sequence of symbols that is orthogonal to a sequence of symbols carried by the legacy STF.
Abstract:
A system and method of auto-detection of WLAN packets includes selecting a first Golay sequence from a first pair of Golay complementary sequences associated with first packet type, each Golay sequence of the first pair of Golay complementary sequences being zero correlation zone (ZCZ) sequences with each Golay sequence of a second pair of Golay complementary sequences associated with a second packet type, and transmitting a wireless packet carrying a short training field (STF) that includes one or more instances of the first Golay sequence.
Abstract:
System and method embodiments are provided for interference alignment in a wireless local area network (LAN) with an overlapping basic service set (OBSS). In an embodiment, a method includes instructing a first access point (AP) in the wireless LAN to broadcast a null data packet (NDP) sounding packet to a plurality of stations when no other AP is broadcasting, wherein the NDP sounding packet comprises a plurality of long training field (LTFs), and wherein a total number of LTFs is equal to a total number of transmission streams, receiving channel beamforming (BF) information and a signal plus interference to noise ratio (SINR) from each of the stations, wherein each of the stations computes the channel BF information and the SINR from sounding packets received from each of the APs in the wireless LAN, and determining a transmission schedule according to the SINRs and the channel BF information.
Abstract:
A method for transmitting a frame includes generating an omni portion of the frame, the omni portion including a non-beamformed long training field and a signal field, the non-beamformed long training field including channel estimation information used to decode the signal field, the non-beamformed long training field configured to be transmitted through one of multiple antennas and multiple streams. The method also includes generating a multi-stream portion of the frame, the multi-stream portion including a data field and a multi-stream long training field, the multi-stream long training field including station-specific decoding information for station-specific data in the data field. The method further includes applying a beamforming indicator to the signal field of the omni portion, and transmitting the frame.