Abstract:
An optical scanning lens is used in a scanning and image forming optical system which gathers a light flux deflected by a light deflector in the vicinity of a surface to be scanned. The lens is formed by plastic molding of polyolefin resin, and the following condition is satisfied: 0
Abstract:
In a surface potential distribution measurement method and device, a sample having a surface with a surface potential distribution is scanned using a charged particle beam in a two-dimensional manner. A detection signal caused by the two-dimensional scanning is obtained to measure the surface potential distribution. Charged particles, other than charged particles of the charged particle beam incident to the sample surface by the two-dimensional scanning, with which components of an incidence velocity vector of the charged particles in a direction perpendicular to the sample surface are reversed, are detected so that a detection signal indicating an intensity according to the detected charged particles is obtained in correspondence with a position on the sample surface.
Abstract:
An optical scanning lens which is used in a scanning and age forming optical system which gathers a light flux deflected by a light deflector in the vicinity of a surface to be scanned. The lens is formed by plastic molding of polyolefin resin, and the following condition is satisfied: 0
Abstract:
An optical scanning apparatus is constructed to detect one or more defective or damaged light emitting devices of a light source unit and forms images having substantially the same quality as that of the images formed when all of a plurality of light emitting devices of a light source of the apparatus are functioning normally even when any one of the plurality of light emitting devices are damaged or broken, without decreasing the image forming performance of the apparatus. The optical scanning apparatus detects one or more damaged or broken light emitting devices and then compensates for the light omitted due to the damaged or broken light emitting devices using the normally functioning light emitting devices without decreasing the image forming speed or quality of the optical scanning apparatus. In order to compensate for a defective light emitting device, the optical scanning apparatus uses various solutions such as increasing the rotating speed of the deflector while increasing the modulation speed of the light emitting devices by the same amount, increasing beam spot diameter in the subscanning direction, changing the output power of the light emitting devices on a surface to be scanned in order to increase beam spot diameter in the main scanning direction and the subscanning direction, and changing the focal length of the line image forming optical apparatus and increasing either the rotation speed of the deflector or the rotation speed of the surface to be scanned or photoconductive drum.
Abstract:
A two-beam detection method causes two beams to differ in light intensity and converging the two beams to enter a common photosensitive element, a photoreception surface of the photosensitive element being configured such that the two beams differ in time required to pass the photoreception surface, processes an output from the photosensitive element using a plurality of threshold levels so as to obtain rectangular signals, one of the rectangular signals obtained using one of the plurality of threshold levels being designated as a detection signal for one of the two beams, and performs a predetermined calculation on the rectangular signals so as to obtain a detection signal for the other of the two beams.