摘要:
A substrate under tension and/or compression improves performance of devices fabricated therein. Tension and/or compression can be imposed on a substrate through selection of appropriate gate sidewall spacer material disposed above a device channel region wherein the spacers are formed adjacent both the gate and the substrate and impose forces on adjacent substrate areas. Another embodiment comprises compressive stresses imposed in the plane of the channel using SOI sidewall spacers made of polysilicon that is expanded by oxidation. The substrate areas under compression or tension exhibit charge mobility characteristics different from those of a non-stressed substrate. By controllably varying these stresses within NFET and PFET devices formed on a substrate, improvements in IC performance have been demonstrated.
摘要:
A semiconductor device and method of manufacturing a semiconductor device. The semiconductor device includes channels for a pFET and an nFET. A SiGe layer is selectively grown in the source and drain regions of the pFET channel and a Si:C layer is selectively grown in source and drain regions of the nFET channel. The SiGe and Si:C layer match a lattice network of the underlying Si layer to create a stress component. In one implementation, this causes a compressive component in the pFET channel and a tensile component in the nFET channel.
摘要:
The present invention provides a semiconducting device including a gate region positioned on a mesa portion of a substrate; and a nitride liner positioned on the gate region and recessed surfaces of the substrate adjacent to the gate region, the nitride liner providing a stress to a device channel underlying the gate region. The stress produced on the device channel is a longitudinal stress on the order of about 275 MPa to about 450 Mpa.
摘要:
The first source and drain regions are formed in an upper surface of a SiGe substrate. The first source and drain regions containing an N type impurity. Vacancy concentration in the first source and drain regions are reduced in order to reduce diffusion of the N type impurity contained in the first source and drain regions. The vacancy concentration is reduced by an interstitial element or a vacancy-trapping element in the first source and drain regions. The interstitial element or the vacancy-trapping element is provided by ion-implantation.
摘要:
The present invention provides a semiconducting device including a gate region positioned on a mesa portion of a substrate; and a nitride liner positioned on the gate region and recessed surfaces of the substrate adjacent to the gate region, the nitride liner providing a stress to a device channel underlying the gate region. The stress produced on the device channel is a longitudinal stress on the order of about 275 MPa to about 450 MPa.
摘要:
A semiconductor device and method of manufacturing a semiconductor device. The semiconductor device includes channels for a pFET and an nFET. A SiGe layer is selectively grown in the source and drain regions of the pFET channel and a Si:C layer is selectively grown in source and drain regions of the nFET channel. The SiGe and Si:C layer match a lattice network of the underlying Si layer to create a stress component. In one implementation, this causes a compressive component in the pFET channel and a tensile component in the nFET channel.
摘要:
A semiconductor device and method of manufacturing a semiconductor device. The semiconductor device includes channels for a pFET and an nFET. A SiGe layer is selectively grown in the source and drain regions of the pFET channel and a Si:C layer is selectively grown in source and drain regions of the nFET channel. The SiGe and Si:C layer match a lattice network of the underlying Si layer to create a stress component. In one implementation, this causes a compressive component in the pFET channel and a tensile component in the nFET channel.
摘要:
A method for manufacturing a semiconductor device is provided. The method includes forming a semiconductor layer on a substrate. The first region of the substrate is expanded to push up the first portion of the semiconductor layer, thereby applying tensile stress to the first portion. The second region of the substrate is compressed to pull down the second portion of the semiconductor layer, thereby applying compressive stress to the second portion. An N type device is formed over the first portion of the semiconductor layer, and a P type device is formed over the second portion of the semiconductor layer.
摘要:
The first source and drain regions are formed in an upper surface of a SiGe substrate. The first source and drain regions containing an N type impurity. Vacancy concentration in the first source and drain regions are reduced in order to reduce diffusion of the N type impurity contained in the first source and drain regions. The vacancy concentration is reduced by an interstitial element or a vacancy-trapping element in the first source and drain regions. The interstitial element or the vacancy-trapping element is provided by ion-implantation.
摘要:
A semiconductor device and method of manufacturing a semiconductor device. The semiconductor device includes channels for a pFET and an nFET. A SiGe layer is selectively grown in the source and drain regions of the pFET channel and a Si:C layer is selectively grown in source and drain regions of the nFET channel. The SiGe and Si:C layer match a lattice network of the underlying Si layer to create a stress component. In one implementation, this causes a compressive component in the pFET channel and a tensile component in the nFET channel.