-
公开(公告)号:US20190011510A1
公开(公告)日:2019-01-10
申请号:US16118223
申请日:2018-08-30
Applicant: Hyperfine Research, Inc.
Inventor: Cedric Hugon , Michael Stephen Poole , Tyler S. Ralston
IPC: G01R33/383 , G01R33/381 , G01R33/38 , G01R33/24 , G01R33/44 , H01F7/02 , G01R33/3873 , H01F7/06 , H01F13/00
Abstract: According to some aspects, a method of producing a permanent magnet shim configured to improve a profile of a B0 magnetic field produced by a B0 magnet is provided. The method comprises determining deviation of the B0 magnetic field from a desired B0 magnetic field, determining a magnetic pattern that, when applied to magnetic material, produces a corrective magnetic field that corrects for at least some of the determined deviation, and applying the magnetic pattern to the magnetic material to produce the permanent magnet shim. According to some aspects, a permanent magnet shim for improving a profile of a B0 magnetic field produced by a B0 magnet is provided. The permanent magnet shim comprises magnetic material having a predetermined magnetic pattern applied thereto that produces a corrective magnetic field to improve the profile of the B0 magnetic field.
-
公开(公告)号:US20190004130A1
公开(公告)日:2019-01-03
申请号:US16122661
申请日:2018-09-05
Applicant: Hyperfine Research, Inc.
Inventor: Michael Stephen Poole , Cedric Hugon , Hadrien A. Dyvorne , Laura Sacolick , William J. Mileski , Jeremy Christopher Jordan , Alan B. Katze, JR. , Jonathan M. Rothberg , Todd Rearick , Christopher Thomas McNulty
IPC: G01R33/385 , G01R33/383 , G01R33/389 , A61B50/13 , A61B90/00
Abstract: According to some aspects, a portable magnetic resonance imaging system is provided, comprising a B0 magnet configured to produce a B0 magnetic field for an imaging region of the magnetic resonance imaging system, a noise reduction system configured to detect and suppress at least some electromagnetic noise in an operating environment of the portable magnetic resonance imaging system, and electromagnetic shielding provided to attenuate at least some of the electromagnetic noise in the operating environment of the portable magnetic resonance imaging system, the electromagnetic shielding arranged to shield a fraction of the imaging region of the portable magnetic resonance imaging system. According to some aspects, the electromagnetic shield comprises at least one electromagnetic shield structure adjustably coupled to the housing to provide electromagnetic shielding for the imaging region in an amount that can be varied.
-
公开(公告)号:US10145913B2
公开(公告)日:2018-12-04
申请号:US15467900
申请日:2017-03-23
Applicant: Hyperfine Research, Inc.
Inventor: Cedric Hugon , Michael Stephen Poole , Tyler S. Ralston
IPC: G01R33/383 , G01R33/3873 , G01R33/44 , H01F7/02 , H01F7/06 , H01F13/00 , G01R33/24 , G01R33/381 , G01R33/38
Abstract: According to some aspects, a method of producing a permanent magnet shim configured to improve a profile of a B0 magnetic field produced by a B0 magnet is provided. The method comprises determining deviation of the B0 magnetic field from a desired B0 magnetic field, determining a magnetic pattern that, when applied to magnetic material, produces a corrective magnetic field that corrects for at least some of the determined deviation, and applying the magnetic pattern to the magnetic material to produce the permanent magnet shim. According to some aspects, a permanent magnet shim for improving a profile of a B0 magnetic field produced by a B0 magnet is provided. The permanent magnet shim comprises magnetic material having a predetermined magnetic pattern applied thereto that produces a corrective magnetic field to improve the profile of the B0 magnetic field.
-
公开(公告)号:US20210173027A1
公开(公告)日:2021-06-10
申请号:US17116173
申请日:2020-12-09
Applicant: Hyperfine Research, Inc.
Inventor: Cedric Hugon , Hadrien A. Dyvorne , Michael Stephen Poole
IPC: G01R33/385 , G01R33/3873 , G01R33/44 , G01R33/383 , G01R33/34 , A61B5/055
Abstract: An apparatus for providing a B0 magnetic field for a magnetic resonance imaging system. The apparatus includes at least one permanent B0 magnet to contribute a magnetic field to the B0 magnetic field for the MRI system and a ferromagnetic frame configured to capture and direct at least some of the magnetic field generated by the B0 magnet. The ferromagnetic frame includes a first post having a first end and a second end, a first multi-pronged member coupled to the first end, and a second multi-pronged member coupled to the second end, wherein the first and second multi-pronged members support the at least one permanent B0 magnet.
-
公开(公告)号:US20210033687A1
公开(公告)日:2021-02-04
申请号:US17063097
申请日:2020-10-05
Applicant: Hyperfine Research, Inc.
Inventor: Cedric Hugon , Michael Stephen Poole , Tyler S. Ralston
IPC: G01R33/383 , G01R33/24 , G01R33/38 , G01R33/381 , G01R33/3873 , G01R33/44 , H01F7/02 , H01F7/06 , H01F13/00
Abstract: A method of producing a permanent magnet shim configured to improve a profile of a B0 magnetic field produced by a B0 magnet is provided. The method comprises determining deviation of the B0 magnetic field from a desired B0 magnetic field, determining a magnetic pattern that, when applied to magnetic material, produces a corrective magnetic field that corrects for at least some of the determined deviation, and applying the magnetic pattern to the magnetic material to produce the permanent magnet shim. According to some aspects, a permanent magnet shim for improving a profile of a B0 magnetic field produced by a B0 magnet is provided. The permanent magnet shim comprises magnetic material having a predetermined magnetic pattern applied thereto that produces a corrective magnetic field to improve the profile of the B0 magnetic field.
-
公开(公告)号:US20200233049A1
公开(公告)日:2020-07-23
申请号:US16840149
申请日:2020-04-03
Applicant: Hyperfine Research, Inc.
Inventor: Michael Stephen Poole , Cedric Hugon , Hadrien A. Dyvorne , Laura Sacolick , William J. Mileski , Jeremy Christopher Jordan , Alan B. Katze , Jonathan M. Rothberg , Todd Rearick , Christopher Thomas McNulty
IPC: G01R33/385 , A61B90/00 , G01R33/48 , G01R33/34 , A61G13/10 , A61B6/00 , A61B5/055 , G01R33/38 , G01R33/56 , G01R33/421 , G01R33/389 , A61B50/13 , G01R33/44 , G01R33/383
Abstract: According to some aspects, a low-field magnetic resonance imaging system is provided. The low-field magnetic resonance imaging system comprises a magnetics system having a plurality of magnetics components configured to produce magnetic fields for performing magnetic resonance imaging, the magnetics system comprising, a B0 magnet configured to produce a B0 field for the magnetic resonance imaging system at a low-field strength of less than 0.2 Tesla (T), a plurality of gradient coils configured to, when operated, generate magnetic fields to provide spatial encoding of magnetic resonance signals, and at least one radio frequency coil configured to, when operated, transmit radio frequency signals to a field of view of the magnetic resonance imaging system and to respond to magnetic resonance signals emitted from the field of view, a power system comprising one or more power components configured to provide power to the magnetics system to operate the magnetic resonance imaging system to perform image acquisition, and a power connection configured to connect to a single-phase outlet to receive mains electricity and deliver the mains electricity to the power system to provide power needed to operate the magnetic resonance imaging system. According to some aspects, the power system operates the low-field magnetic resonance imaging system using an average of less than 1.6 kilowatts during image acquisition.
-
公开(公告)号:US20200209335A1
公开(公告)日:2020-07-02
申请号:US16685037
申请日:2019-11-15
Applicant: Hyperfine Research, Inc.
Inventor: Rafael O'Halloran , Cedric Hugon , Laura Sacolick , Hadrien A. Dyvorne
IPC: G01R33/565 , G01R33/32
Abstract: An apparatus for controlling at least one gradient coil of a magnetic resonance imaging (MRI) system. The apparatus may include at least one computer hardware processor; and at least one computer-readable storage medium storing processor executable instructions that, when executed by the at least one computer hardware processor, cause the at least one computer hardware processor to perform a method. The method may include receiving information specifying at least one target pulse sequence; determining a corrected pulse sequence to control the at least one gradient coil based on the at least one target pulse sequence and a hysteresis model of induced magnetization in the MRI system caused by operation of the at least one gradient coil; and controlling, using the corrected gradient pulse sequence, the at least one gradient coil to generate one or more gradient pulses for imaging a patient.
-
公开(公告)号:US20200150204A1
公开(公告)日:2020-05-14
申请号:US16742311
申请日:2020-01-14
Applicant: Hyperfine Research, Inc.
Inventor: Michael Stephen Poole , Cedric Hugon
IPC: G01R33/385 , A61B90/00 , G01R33/48 , G01R33/34 , A61G13/10 , A61B6/00 , A61B5/055 , G01R33/38 , G01R33/56 , G01R33/421 , G01R33/389 , A61B50/13 , G01R33/44 , G01R33/383
Abstract: According to some aspects, a low-field magnetic resonance imaging system is provided. The low-field magnetic resonance imaging system comprises a magnetics system having a plurality of magnetics components configured to produce magnetic fields for performing magnetic resonance imaging, the magnetics system comprising, a B0 magnet configured to produce a B0 field for the magnetic resonance imaging system at a low-field strength of less than 0.2 Tesla (T), a plurality of gradient coils configured to, when operated, generate magnetic fields to provide spatial encoding of magnetic resonance signals, and at least one radio frequency coil configured to, when operated, transmit radio frequency signals to a field of view of the magnetic resonance imaging system and to respond to magnetic resonance signals emitted from the field of view, a power system comprising one or more power components configured to provide power to the magnetics system to operate the magnetic resonance imaging system to perform image acquisition, and a power connection configured to connect to a single-phase outlet to receive mains electricity and deliver the mains electricity to the power system to provide power needed to operate the magnetic resonance imaging system. According to some aspects, the power system operates the low-field magnetic resonance imaging system using an average of less than 1.6 kilowatts during image acquisition.
-
公开(公告)号:US10520566B2
公开(公告)日:2019-12-31
申请号:US15821207
申请日:2017-11-22
Applicant: Hyperfine Research, Inc.
Inventor: Michael Stephen Poole , Cedric Hugon , Hadrien A. Dyvorne , Laura Sacolick , William J. Mileski , Jeremy Christopher Jordan , Alan B. Katze, Jr. , Jonathan M. Rothberg , Todd Rearick , Christopher Thomas McNulty
IPC: G01R33/38 , G01R33/385 , G01R33/383 , G01R33/44 , G01R33/389 , G01R33/421 , G01R33/56 , A61B5/055 , A61B6/00 , A61G13/10 , G01R33/34 , G01R33/48 , A61B90/00 , A61B50/13 , G01R33/36 , G01R33/422 , G01R33/3873
Abstract: According to some aspects, a low-field magnetic resonance imaging system is provided. The low-field magnetic resonance imaging system comprises a magnetics system having a plurality of magnetics components configured to produce magnetic fields for performing magnetic resonance imaging, the magnetics system comprising, a B0 magnet configured to produce a B0 field for the magnetic resonance imaging system at a low-field strength of less than 0.2 Tesla (T), a plurality of gradient coils configured to, when operated, generate magnetic fields to provide spatial encoding of magnetic resonance signals, and at least one radio frequency coil configured to, when operated, transmit radio frequency signals to a field of view of the magnetic resonance imaging system and to respond to magnetic resonance signals emitted from the field of view, a power system comprising one or more power components configured to provide power to the magnetics system to operate the magnetic resonance imaging system to perform image acquisition, and a power connection configured to connect to a single-phase outlet to receive mains electricity and deliver the mains electricity to the power system to provide power needed to operate the magnetic resonance imaging system. According to some aspects, the power system operates the low-field magnetic resonance imaging system using an average of less than 1.6 kilowatts during image acquisition.
-
公开(公告)号:US20190257903A1
公开(公告)日:2019-08-22
申请号:US16385082
申请日:2019-04-16
Applicant: Hyperfine Research, Inc.
Inventor: Michael Stephen Poole , Cedric Hugon , Hadrien A. Dyvorne , Laura Sacolick , William J. Mileski , Jeremy Christopher Jordan , Alan B. Katze, JR. , Jonathan M. Rothberg , Todd Rearick , Christopher Thomas McNulty
IPC: G01R33/385 , G01R33/44 , G01R33/389 , A61B5/055 , G01R33/383 , G01R33/421 , G01R33/56 , G01R33/38 , G01R33/34 , G01R33/48 , A61G13/10 , A61B50/13 , A61B6/00 , A61B90/00
Abstract: A low-field MRI system comprising: a magnetics system having a plurality of magnetics components configured to produce magnetic fields for MR imaging. The magnetics system comprises: a B0 magnet configured to produce a B0 field at a field strength of less than .2 Tesla (T); a plurality of gradient coils configured to, when operated, generate magnetic fields to provide spatial encoding of emitted MR signals; and at least one RF coil configured to, when operated, transmit RF signals to a field of view of the MIR system and to respond to MR signals emitted from the field of view. The MRI system comprises a power system comprising one or more power components configured to provide power to the magnetics system to operate the MRI system to perform image acquisition, wherein the power system operates the MRI system using an average of less than 5 kilowatts during image acquisition.
-
-
-
-
-
-
-
-
-