Abstract:
A method and apparatus for data transmissions in a wireless network are disclosed. A first device may send a first frame to a second device including information regarding a number of pending data frames to be transmitted from the first device to the second device. The first device receives an acknowledgement frame including a number of approved data frames for transmission from the first device to the second device. The first device then may send a plurality of data frames without performing the contention-based channel access procedure in response to the acknowledgement frame. The first device may send a first frame to a second device for requesting data frames that are pending at the second device. The first device receives an acknowledgement frame including a number of pending and approved data frames. The first device may receive a plurality of data frames in response to the acknowledgement frame.
Abstract:
Methods and systems providing application layer support for one or more sleeping nodes in constrained networks are contemplated. Embodiments contemplate inserting sleep information in a header option or payload of an application layer message. The application layer message may be conveyed in a hypertext transfer protocol (HTTP) or a constrained application protocol (CoAP). Embodiments contemplate communicating the application layer message to a server, which may serve as a caching and/or buffering proxy.
Abstract:
A method and apparatus are described for providing triggering services over multiple access networks. A triggering service server (TSS) architecture includes a triggering identity function (TIF) which maintains a database of device and application identifier mappings across multiple access networks, triggering capabilities and triggering preferences. The TSS also includes a triggering decision function (TDF) that uses information from the TIF and determines how triggers should be performed towards a device and/or an application hosted on a particular device. The TSS also includes triggering gateways (T-GWs) that perform triggering in different domains. A “not-registered-triggerable” state may be used to indicate whether an entity, such as a device, application or user can receive triggers although it is not registered in a specific access network. Methods and apparatus are also described for implementing various unassisted triggering and assisted triggering procedures using wireless transmit/receive units (WTRUs), application servers (ASs) and service capability servers (SCSs).
Abstract:
Methods and apparatuses for capillary network device registration implemented in a wireless transmit/receive unit (WTRU) are disclosed. Registration or bootstrap messages may be received by a capillary network device where the WTRU acts as a gateway for communication between the capillary device and a network such as a 3GPP network. A capillary network device identifier (CNDID) is sent to the capillary device. A packet data protocol (PDP) context or PDN connection may be established with the network and the CNDID may be sent to a machine type communications (MTC) server. The WTRU may create the registration message, establish a connection with the network, and forward the registration message to the MTC server. Methods and apparatuses implemented in a network are also disclosed for identifying, addressing, and triggering the capillary devices from the MTC server. The trigger message may include fields for group communication, reducing signaling, and enabling charging.
Abstract:
Systems and/or methods for providing internetworking among application services layers (ASLs) of different network technologies may be provided. For example, a tunnel anchor point (TAP) may be established. The TAP may be configured to enable communication between a local application in the network and a remote application in a different network. At the TAP, an ASL tunnel may be created to the local application in the network to facilitate the communication. Additionally, a message from the local application may be received where at least a portion of the message may be configured to be provided to a remote ASL and the remote application in the different network to which the local application wishes to communicate. At least the portion of the message may be provided to the remote ASL and the remote application in the different network.