Abstract:
Methods and apparatus are described for configuring desired network capabilities in a service-based network, including a method for a UE to initiate a network capability based registration to configure its desired network capabilities, a method for UEs to initiate a network capability based registration update when UEs are already registered to the network and want to dynamically re-configure their network capabilities, and a method for a network capability based UE configuration update, which allows NFs or ASs to initiate updating the network capabilities in a network slice for the UE.
Abstract:
Methods and apparatus are described for configuring desired network capabilities in a service-based network, including a method for a UE to initiate a network capability based registration to configure its desired network capabilities, a method for UEs to initiate a network capability based registration update when UEs are already registered to the network and want to dynamically re-configure their network capabilities, and a method for a network capability based UE configuration update, which allows NFs or ASs to initiate updating the network capabilities in a network slice for the UE.
Abstract:
The service layer may leverage the access network infrastructure so that applications on a device may bootstrap with a machine-to-machine server without requiring provisioning beyond what is already required by the access network.
Abstract:
Cellular devices are becoming more and more powerful, and may host a number of different non-cellular capabilities, such as cameras, accelerometers, and sensors. Today, these capabilities are used mainly to provide some service to the device or the device owner. Disclosed herein are methods and systems for enabling devices to register their device capabilities with a cellular network, providing a mechanism for Application Servers to discover non-cellular capabilities of the devices, providing a mechanism to have the Application Servers configure these non-cellular capabilities of the devices, and preparing the device and the network for cellular traffic generated as a result of the Application Server using these non-cellular capabilities.
Abstract:
It is recognized herein that capabilities are lacking related to how different users can be authenticated on top of an existing subscription authentication. In some examples, a user¬ centric authentication layer may be supported on top of an existing subscription authentication, such that different users may use the same user equipment (UE) with customized services, and different users of devices can be identified behind a gateway with a 3GPP subscription (without the devices having a dedicated 3GPP subscription). Further, a user identifier may be linked to a subscription to access 3GPP services via non-3GPP access.
Abstract:
Systems, methods, and instrumentalities are disclosed to desynchronize transmissions in group-based operations. A group user equipment (UE), e.g., a UE that is a member of a group of UEs, may be in an inactive mode. The group UE may receive a multicast message indicating that the group UE may enter an active mode. For example, the group UE may use the active mode for periodic reporting of its monitoring activity to the network. The multicast message may indicate a mechanism for the group UE to use to send an uplink transmission to the network. The group UE may send the uplink transmission to the network at a transmission time indicated by the mechanism. The transmission time may be desynchronized from other UEs in the group.
Abstract:
Devices, computer readable media, and methods for supporting services at an application service layer (ASL) are disclosed. The ASL may be a machine-to-machine (M2M) services capability layer (SCL). Content functions may interpret the data to generate a semantic description of the data. Semantic information associated with data may be stored. Context aware functions may process the semantic description of the data to generate lower level contextual cues. Context aware reasoning functions may process the lower level contextual cues to deduce higher level context. An application or a second ASL may use the contextual cues and the situational context to trigger an action. The ASL may create a trigger condition based on a received message. The ASL may invoke a function based on detecting a trigger condition. The ASL may perform a command based on a received command. The ASL may use a objective function and feedback to control a device.
Abstract:
Systems, methods, and instrumentalities are disclosed to desynchronize transmissions in group-based operations. A group user equipment (UE), e.g., a UE that is a member of a group of UEs, may be in an inactive mode. The group UE may receive a multicast message indicating that the group UE may enter an active mode. For example, the group UE may use the active mode for periodic reporting of its monitoring activity to the network. The multicast message may indicate a mechanism for the group UE to use to send an uplink transmission to the network. The group UE may send the uplink transmission to the network at a transmission time indicated by the mechanism. The transmission time may be desynchronized from other UEs in the group.
Abstract:
Systems, methods, and instrumentalities are provided to determine routing associated with a short message. A SMS-SC may send a first routing request to a home subscriber server (HSS). The first routing request may be associated with the short message. The SMS-SC may receive a first routing reply. The first routing reply may include one of an indication that the short message is associated with a service capability server (SCS) or a first control plane routing associated with the short message. The SMS-SC may send the short message to an SCS serving node. The first routing reply may include the indication that the short message is associated with a service capability server (SCS). The SMS-SC may send a second routing request to a SCS subscription database. The SMS-SC may receive a second routing reply from the SCS subscription database, which may indicate a second control plane routing for the short message.
Abstract:
Systems and/or methods for providing internetworking among application services layers (ASLs) of different network technologies may be provided. For example, a tunnel anchor point (TAP) may be established. The TAP may be configured to enable communication between a local application in the network and a remote application in a different network. At the TAP, an ASL tunnel may be created to the local application in the network to facilitate the communication. Additionally, a message from the local application may be received where at least a portion of the message may be configured to be provided to a remote ASL and the remote application in the different network to which the local application wishes to communicate. At least the portion of the message may be provided to the remote ASL and the remote application in the different network.