Abstract:
Disclosed herein are methods and systems for integrating peer-to-peer (P2P) networks with content delivery networks (CDNs). In an embodiment, a method for use in a network storage control peer (NSCP) supporting P2P operation includes receiving swarm stats from a tracker; determining, based on the received swarm stats, a P2P rarity associated with a content piece; and responsive to the determined P2P rarity, transmitting an upload request message to an ingestion gateway, wherein the upload request message indicates that the content piece is to be uploaded to a CDN.
Abstract:
An apparatus and method are described for sponsoring service and preferential traffic handling, (i.e., data connectivity) by wireless transmit/receive units (WTRUs). A first WTRU may initiate user sponsoring of a second WTRU via an application server (AS). The first WTRU may receive a service trigger from the AS and forward the service trigger to the second WTRU. The second WTRU may then initiate a sponsored session with the AS using the service trigger in order to receive a service from the AS. The first WTRU may also request the AS to transfer a credit to the second WTRU. The AS may establish a direct communication link with a charging system including an online charging function (OCF) and a charging data function (CDF). The AS may send a request to a network to provide preferential traffic handling needed to deliver content to the second WTRU.
Abstract:
Techniques for inter-user equipment (UE) transfer (IUT) are disclosed. An application server may receive an IUT request for transfer of a media session toward at least one initial UE such that the media session is to be played by at least two target UEs. The server may determine eligibility for IUT with group synchronization based on the request. The server may send a message to the initial UE that IUT with group synchronization is not allowed on a condition that IUT with group synchronization is not allowed. Further, the server may trigger inter-destination media synchronization (IDMS) for group synchronization of media sessions among the UEs on a condition that IUT with group synchronization is allowed. The media sessions may include a first media session and second media session. The media stream may be played by at least two UEs that are geographically separated after the transfer.
Abstract:
The disclosure pertains to methods and apparatus for conveying surveillance targets using Bloom filters or the like in order to obfuscate the identities of the actual users that are under surveillance.
Abstract:
A method and apparatus are described for forwarding content delivery network interconnection (CDNI) signaling. A CDNI router content delivery network (CDN) may establish CDNIs with upstream and downstream CDNs. The CDNI router CDN may receive a CDNI route advertisement message from at least one of the upstream and downstream CDNs. The CDNI router CDN may update at least one end-user-based CDNI routing table based on Internet protocol (IP) address blocks in the CDNI route advertisement message. The CDNI router CDN may transmit an updated CDNI route advertisement message to at least one of the upstream and downstream CDNs. At least one of the upstream and downstream CDNs may update at least one end-user-based CDNI routing table based on the end user IP address blocks in the updated CDNI route advertisement message.
Abstract:
Systems and methods for enabling proximity services to be delivered as part of an application service and/or for providing tailored services and/or a differential quality of service (QoS) to a flow may be disclosed. For example, a temporary service name between an application and a server such as a D2D server may be established such that a UE and/or network may execute such a service at a later time without later involvement by the application and/or without exchanging credentials for the application with the network and vice versa.
Abstract:
A method and apparatus are described for providing a dynamic cache function in a network or cloud. A content cache server (CCS) and a lightweight CCS with a dynamic cache function may be deployed in the network or cloud. A tracker may be used to place dynamic cache peers in a peer list, and transmit the peer list to a wireless transmit/receive unit (WTRU). The peer list may include a single peer that is a dynamic cache peer allocated by the tracker to the WTRU, or at least two dynamic cache peers, with one additional “weight” parameter for each dynamic cache peer. The WTRU may connect to the dynamic cache peer with the largest “weight” parameter, and connect to a different dynamic cache peer in the peer list on a condition that the WTRU gets disconnected or gets bad service from the dynamic cache peer with the largest “weight” parameter.
Abstract:
A method and apparatus for managing content storage subsystems in a communications network are disclosed. The communications network is equipped with a plurality of content storage subsystems. The content storage subsystems store local copies of content to facilitate the delivery and distribution of the content to wireless transmit/receive units, WTRUs. The network, which is equipped with a proxy server and an entry server, receives requests for content or general-purpose data referencing content and determines whether the content is stored in the storage subsystems. In addition, the network also performs content ingestion in order to store copies of the content in the storage subsystems and content modification in order to move content from one storage location to another to achieve optimal content storage and distribution.