Abstract:
A multi-hypothesis rate adaptation technique may be performed for one or more wireless multimedia streaming scenarios. Managing a multimedia streaming session may involve sending, by a client, a request for a first portion of content to a server. A response may be received from a proxy. The response may comprise the first portion of content and information associated with a second portion of content available via the proxy. A request may be sent to the proxy for the proxy to deliver the second portion of content to the client. A change in a parameter associated with the multimedia streaming session may be determined based on data received from the proxy. It may be determined to change a rate adaptation. A Wireless Transmit/Receive Unit (WTRU) may be configured to perform the rate adaptation.
Abstract:
Disclosed herein are methods and systems for integrating peer-to-peer (P2P) networks with content delivery networks (CDNs). In an embodiment, a method for use in a network storage control peer (NSCP) supporting P2P operation includes receiving swarm stats from a tracker; determining, based on the received swarm stats, a P2P rarity associated with a content piece; and responsive to the determined P2P rarity, transmitting an upload request message to an ingestion gateway, wherein the upload request message indicates that the content piece is to be uploaded to a CDN.
Abstract:
Techniques for inter-user equipment (UE) transfer (IUT) are disclosed. An application server may receive an IUT request for transfer of a media session toward at least one initial UE such that the media session is to be played by at least two target UEs. The server may determine eligibility for IUT with group synchronization based on the request. The server may send a message to the initial UE that IUT with group synchronization is not allowed on a condition that IUT with group synchronization is not allowed. Further, the server may trigger inter-destination media synchronization (IDMS) for group synchronization of media sessions among the UEs on a condition that IUT with group synchronization is allowed. The media sessions may include a first media session and second media session. The media stream may be played by at least two UEs that are geographically separated after the transfer.
Abstract:
A method and apparatus are described for forwarding content delivery network interconnection (CDNI) signaling. A CDNI router content delivery network (CDN) may establish CDNIs with upstream and downstream CDNs. The CDNI router CDN may receive a CDNI route advertisement message from at least one of the upstream and downstream CDNs. The CDNI router CDN may update at least one end-user-based CDNI routing table based on Internet protocol (IP) address blocks in the CDNI route advertisement message. The CDNI router CDN may transmit an updated CDNI route advertisement message to at least one of the upstream and downstream CDNs. At least one of the upstream and downstream CDNs may update at least one end-user-based CDNI routing table based on the end user IP address blocks in the updated CDNI route advertisement message.
Abstract:
A method and apparatus are described for providing a dynamic cache function in a network or cloud. A content cache server (CCS) and a lightweight CCS with a dynamic cache function may be deployed in the network or cloud. A tracker may be used to place dynamic cache peers in a peer list, and transmit the peer list to a wireless transmit/receive unit (WTRU). The peer list may include a single peer that is a dynamic cache peer allocated by the tracker to the WTRU, or at least two dynamic cache peers, with one additional “weight” parameter for each dynamic cache peer. The WTRU may connect to the dynamic cache peer with the largest “weight” parameter, and connect to a different dynamic cache peer in the peer list on a condition that the WTRU gets disconnected or gets bad service from the dynamic cache peer with the largest “weight” parameter.
Abstract:
A method and apparatus for managing content storage subsystems in a communications network are disclosed. The communications network is equipped with a plurality of content storage subsystems. The content storage subsystems store local copies of content to facilitate the delivery and distribution of the content to wireless transmit/receive units, WTRUs. The network, which is equipped with a proxy server and an entry server, receives requests for content or general-purpose data referencing content and determines whether the content is stored in the storage subsystems. In addition, the network also performs content ingestion in order to store copies of the content in the storage subsystems and content modification in order to move content from one storage location to another to achieve optimal content storage and distribution.
Abstract:
Methods and apparatus are described for synchronizing a media presentation on a plurality of wireless transmit/receive units (WTRUs). A media session may be synchronized by a first wireless transmit/receive unit (WTRU) creating a networked bookmark for a media program at a bookmark-created time; the first WTRU presenting the media program at a bookmark-presentation time, wherein the first WTRU includes in the networked bookmark a suggested presentation offset that indicates an offset in time from the bookmark-created time to the bookmark-presentation time; and the first WTRU transmitting the networked bookmark, including the suggested presentation offset, to an Internet Protocol (IP) Multimedia Subsystem (IMS) network for use by a second WTRU in replicating, at the second WTRU, the presentation of the media program at the first WTRU.
Abstract:
A method and apparatus for use in a network storage control peer (NSCP) supporting peer to peer (P2P) operation are disclosed. The method includes receiving a content map request message and transmitting a content map response message including an indication that a CDN-stored content piece is available from the NSCP; and, receiving a content fetch request message for the content piece and transmitting a response message including a redirection command and the CDN URI for the content piece.
Abstract:
Systems, methods, and instrumentalities are provided to implement content caching. An entity running an external application (EA) may establish a connection between the EA and a centralized cloud controller (CCC) to access a service on the CCC. The EA may receive credentials for access to the service. The connection between the EA and the CCC may be established over a first interface. The EA may send to the service on the CES a query for an available small cell network (SCN) storage. The EA may receive from the service on the CES reply comprising a link to an allocated SCN storage. The EA may ingest one or more contents using the link in the allocated SCN storage. A wireless transmit/receive unit (WTRU) may receive the cached content from an edge server in a small cell network.
Abstract:
Methods and apparatus are described for synchronizing a media presentation on a plurality of wireless transmit/receive units (WTRUs). A media session may be replicated from a first WTRU onto a second WTRU. The first WTRU may initiate a bookmark procedure to create a bookmark to obtain synchronized playout with the second WTRU. A suggested presentation offset in the bookmark may specify an offset in time from a bookmark created time to a bookmark presentation time at the first WTRU. The first WTRU may establish an Internet protocol (IP) multimedia subsystem (IMS) session with a packet switch stream (PSS) server. The media session may be replicated onto the second WTRU at a wall-clock time T, and the second WTRU may present an offset equal to T−bookmarkcreatedtime+bookmark offset−suggestedPresentationOffset from the beginning of a program in order to obtain synchronized media playout with the first WTRU.