摘要:
A formation fluid sampling tool is provided with a drill which drills into the formation in a manner perpendicular or oblique to the borehole wall. Preferably the tool introduces a mechanism into the drilled hole for enhancing the mobility of the reservoir fluid. In one embodiment the mechanism is a heating element on the drill. In another embodiment, the mechanism is hot fluid which is generated in the tool and injected into the drilled hole. In another embodiment, the mechanism is a solvent which is stored in the tool and injected by the tool into the drilled hole.
摘要:
A formation fluid sampling tool is provided with reactants which are carried downhole and which are combined in order to generate heat energy which is applied to the formation adjacent the borehole. By applying heat energy to the formation, the formation fluids are heated, thereby increasing mobility, and fluid sampling is expedited.
摘要:
Variable volume systems and methods of use thereof described herein are capable of making calibrated determinations of fluid properties and phase behavior of a fluid sample. The determinations can be calibrated based on one or more calibration functions, such as system volume corrected for pressure and temperature variations. Cross-checking the results of measurements can be used to determine accuracy of the calibration or monitor for leaks or other anomalies of the variable volume systems. The variable volume systems can be implemented in a well logging tool and are capable of being calibrated downhole.
摘要:
Example methods and apparatus to detect phase separation in downhole fluid sampling operations are disclosed. An example method to detect a phase separation condition of a fluid from a subterranean involves obtaining a sample of the fluid, measuring a first characteristic value of the sample, measuring a second characteristic value of the sample and comparing the first characteristic value to a first reference value associated with a single-phase condition of the fluid to generate a corresponding first comparison result. The example method then compares the second characteristic value to a second reference value associated with the single-phase condition of the fluid to generate a corresponding second comparison result and detects the phase separation condition of the fluid based on the first and second comparison results.
摘要:
Example methods and apparatus to determine phase-change pressures are disclosed. A disclosed example method includes capturing a fluid in a chamber, pressurizing the fluid at a plurality of pressures, measuring a plurality of transmittances of a signal through the fluid at respective ones of the plurality of pressures, computing a first magnitude of a first subset of the plurality of transmittances, computing a second magnitude of a second subset of the plurality of transmittances, comparing the first and second magnitudes to determine a phase-change pressure for the fluid.
摘要:
A formation fluid sampling tool is provided with reactants which are carried downhole and which are combined in order to generate heat energy which is applied to the formation adjacent the borehole. By applying heat energy to the formation, the formation fluids are heated, thereby increasing mobility, and fluid sampling is expedited.
摘要:
Example methods and apparatus to determine the compressibility of a fluid are disclosed. A disclosed example method includes capturing a fluid in a chamber, pressurizing the captured fluid to first and second pressures, measuring first and second values representative of first and second densities of the fluid while pressurized at respective ones of the first and second pressures, and computing a third value representative of a compressibility of the fluid using the first and second values.
摘要:
A system and method for obtaining a clean fluid sample for analysis in a downhole tool are provided. In one example, the method includes directing fluid from a main flowline of the downhole tool to a secondary flowline of the downhole tool. While the fluid is being directed into the secondary flowline, sensor responses corresponding to the fluid in the secondary flowline are monitored to determine when the sensor responses stabilize. The secondary flowline is isolated from the main flowline after the sensor responses have stabilized. A quality control procedure is performed on the fluid in the secondary flowline to determine whether the captured fluid is the same as the fluid in the main flowline. Additional fluid from the main flowline is allowed into the secondary flowline if the captured fluid is not the same.
摘要:
A method of retrieving a formation fluid from a formation adjacent a borehole wall includes estimating at least one of a permeability of the formation and a viscosity of the formation fluid. A first tool is selected based on the estimation, the first tool being selected from one of a heating and sampling tool, an injection and sampling tool, and a coring tool. An attempt to retrieve a formation fluid sample from the formation is then made with the first tool, and a formation fluid sample is retrieved from the formation. A second retrieval process may then be initiated, in which the second retrieval process includes increasing the mobility of the formation fluid.
摘要:
Apparatus and methods to remove impurities at a sensor in a downhole tool are disclosed. During the testing and/or sampling of formation fluid in a borehole, the downhole tool creates a transient high rate of fluid flow of the formation fluid to remove impurities at the sensor.