Abstract:
A method and system for managing a cell sectorized by both an angle in azimuth and a distance from a base station are disclosed. A wireless communication system comprises a base station and a cell. The base station comprises an antenna array for generating a plurality of directional beams which are steerable both in azimuth and elevation. The cell is sectorized into a plurality of sectors defined in accordance with an angle in azimuth and a distance from the base station. At least one directional beam serves each sector. Beams serving adjacent sectors overlap each other, and a softer handover in a cell is performed in the overlapping region.
Abstract:
A varactor based phase shifter that increases phase shift range using a lower characteristic impedance between quadrature ports than is used at its input/output ports. The circuit makes use of a four port coupler arrangement that imbeds a quarter wave impedance transformation between the input port and the quadrature ports as well as between the quadrature ports and the output port. The characteristic impedance across the quadrature ports is therefore less than the characteristic impedance across the input and output ports. In one implementation, reducing a characteristic input/output impedance of 50 to a 20 ohm quadrature port impedance results in a phase shift range increase of more than 50%.
Abstract:
An antenna assembly includes at least two active or main radiating omni-directional antenna elements arranged with at least one beam control or passive antenna element used as a reflector. The beam control antenna element(s) may have multiple reactance elements that can electrically terminate it to adjust the input or output beam pattern(s) produced by the combination of the active antenna elements and the beam control antenna element(s). More specifically, the beam control antenna element(s) may be coupled to different terminating reactances to change beam characteristics, such as the directivity and angular beamwidth. Processing may be employed to select which terminating reactance to use. Consequently, the radiator pattern of the antenna can be more easily directed towards a specific target receiver/transmitter, reduce signal-to-noise interference levels, and/or increase gain by using Radio Frequency (RF), Intermediate Frequency (IF), or baseband processing. A Multiple-Input, Multiple-Output (MIMO) processing technique may be employed to operate the antenna assembly with simultaneous beam patterns.
Abstract:
An antenna array that uses at least two passive antennas and one active antenna disposed above a ground plane, but electrically isolated from the ground plane, and a respective resonant strip positioned beneath each passive antenna. The passive antenna elements are positioned about the active element, and each of the at least two passive antenna elements is individually set to a reflective or a transmissive mode to change the characteristics of an input/output beam pattern of the antenna apparatus.
Abstract:
A folded monopole antenna that supports lower and upper frequency bands may be used in CDMA, WLAN, or other wireless communications systems. The folded monopole antenna may be located in a handset next to a vertical ground plane. The folded monopole antenna may be folded at least twice and connected to the ground plane through a reactance. The dimensions of different sections of the folded monopole antenna define lower and upper frequency band characteristics, and an offset location of an input feed affects the bandwidth of the frequency bands. The reactance between the antenna and ground plane can be selected to fine tune the frequency bands. Various input feeds, including a co-planar waveguide, may be employed. Dynamically adjustable reactances may be used in the input feed and ground line for adapting the antenna to various environments.
Abstract:
An antenna array formed on a deformable dielectric material or substrate includes a center element and plurality of radial elements extending from a center hub. In the operative mode, the radial elements are folded upwardly into an approximately vertical position, with the center element at the center of the hub and the radial elements circumferentially surrounding the center element. In one embodiment the center element serves an active element of the antenna array and the radial elements are controllable in a directive or reflective state to effect a directive beam pattern from the antenna array. When not in use, the antenna elements are deformed into a plane and can therefore be integrated into a housing for compact storage. In a phased array embodiment, the center element is absent and the plurality of radial elements, are controllable to steer the antenna beam.
Abstract:
An antenna array having a central active element and a plurality of passive elements surrounding the active element is disclosed. A dielectric substrate or other slow wave structure is disposed radially outwardly from the passive elements for slowing the radio frequency waves so as to increase the antenna directivity by reducing the amount of energy radiated in the elevation direction.
Abstract:
A monopole antenna for use with a mobile subscriber unit in a wireless network communications system. The antenna includes a radiating element located near a feed point to minimize transmission delay from the feed point to the element, and a ground patch located above the element to force the beam peak down towards the horizon. The antenna is fabricated with printed circuit board (PCB) photo-etching techniques for precise control of the printed structure. The monopole antenna includes a planar substrate made of dielectric material. A conductive planar element is layered on one side of the substrate, and a conductive planar ground patch is layered on the other side of the substrate. The conductive planar element is located in a lower region of the substrate, while the location of the conductive planar ground patch is offset from the conductive planar element in an upper region of the substrate, that is, the ground patch is stacked above the conductive planar element. The feed point is typically connected to a transmission line for transmitting signals to and receiving signals from the antenna. A strip is connected to the conductive planar ground patch and extends from the patch to a bottom edge of the substrate for coupling the ground patch to a ground plane upon which the antenna is mounted.
Abstract:
An antenna array for use with a mobile subscriber unit in a wireless network communications system. The invention utilizes a multiplicity of resonant strips provided within the ground plane. These strips couple to an equal multiplicity of monopole array elements located on top of the ground plane. This approach increases antenna gain by more efficiently utilizing the available ground plane area. Additionally, since the active element is on top of the ground plane, the antenna array sensitivity is decreased because the direct coupling between the antenna and external environmental factors is minimized. The multiplicity of antenna elements are electrically isolated from the ground plane. Each antenna element has a bottom end located proximal to the ground plane, and is aligned along a respective antenna axis that is substantially perpendicular to the top side. Each resonant strip has a top end electrically connected to the ground plane and a bottom end spaced apart from a bottom side of the ground plane, and is aligned along the antenna axis of a corresponding antenna element. The multiplicity of antenna elements and the multiplicity of resonant strips are equally spaced about the perimeter of the ground plane, and the combination of each antenna element with a respective resonant strip provides a unbalanced dipole antenna element so that the multiplicity of dipole antenna elements form a composite beam which may be positionally directed along a horizon that is substantially parallel to the ground plane.
Abstract:
Antennas for electronic devices are provided. First and second antennas may be mounted within an electronic device. Free-space coupling between the first and second antennas may give rise to interference. The first and second antennas may be coupled to a global ground. The global ground may be formed using a conductive member in the electronic device such as a conductive frame member. Signals that pass between the antennas through the global ground may serve as canceling signals that reduce the magnitude of free-space interference signals and thereby improve antenna isolation. The antennas may be coupled to the global ground using electrical paths or through near-field electromagnetic coupling. Coupling efficiency to the global ground may be enhanced by configuring the conductive traces of one or both of the antennas to form a resonant circuit.