Abstract:
A vehicle includes a main body and a gas generator producing a gas stream. At least one fore conduit and tail conduit are fluidly coupled to the generator. First and second fore ejectors are fluidly coupled to the at least one fore conduit. At least one tail ejector is fluidly coupled to the at least one tail conduit. The fore ejectors respectively include an outlet structure out of which gas from the at least one fore conduit flows. The at least one tail ejector includes an outlet structure out of which gas from the at least one tail conduit flows. First and second primary airfoil elements have leading edges respectively located directly downstream of the first and second fore ejectors. At least one secondary airfoil element has a leading edge located directly downstream of the outlet structure of the at least one tail ejector.
Abstract:
A propulsion system for an aircraft includes a plenum having an intake port and an output port. A fan is coupled to a motor configured to power the fan, and the powered fan is configured to compress ambient air entering the intake port. One or more ejectors are fluidically coupled to the plenum via one or more valves. A nozzle is disposed within the output port and includes a set of vanes. The system operates in a first configuration in which the nozzle vanes are closed and the compressed ambient air exits the plenum only through the one or more valves into the one or more ejectors. The system operates in a second configuration in which the one or more valves are closed, the nozzle vanes are open and the compressed ambient air exits the plenum only through the output port.
Abstract:
An aircraft includes a fuselage and at least one primary wing having an upper surface, at least one recess in the upper surface and at least one conduit in fluid communication with the at least one recess. At least one ejector is disposed within the at least one recess and is configured to receive compressed air via the at least one conduit.
Abstract:
A propulsion system includes a first compressor in fluid communication with a fluid source. A first conduit is coupled to the first compressor, and a heat exchanger is in fluid communication with the first compressor via the first conduit. A second conduit is positioned proximal to the heat exchanger. A combustor is in fluid communication with the heat exchanger via the second conduit and is configured to generate a high-temperature gas stream. A third conduit is coupled to the combustor, and a first thrust augmentation device is in fluid communication with the combustor via the third conduit. The heat exchanger is positioned within the gas stream generated by the combustor.
Abstract:
A vehicle, includes a main body. A fluid generator is coupled to the main body and produces a fluid stream. At least one tail conduit is fluidly coupled to the generator. First and second fore ejectors are coupled to the main body and respectively coupled to a starboard side and port side of the vehicle. The fore ejectors respectively comprise an outlet structure out of which fluid flows. At least one tail ejector is fluidly coupled to the tail conduit. The tail ejector comprises an outlet structure out of which fluid flows. A primary airfoil element includes a closed wing having a leading edge and a trailing edge. The leading and trailing edges of the closed wing define an interior region. The at least one propulsion device is at least partially disposed within the interior region.
Abstract:
A propulsion system includes a first compressor in fluid communication with a fluid source. A first conduit is coupled to the first compressor, and a heat exchanger is in fluid communication with the first compressor via the first conduit. A second conduit is positioned proximal to the heat exchanger. A combustor is in fluid communication with the heat exchanger via the second conduit and is configured to generate a high-temperature gas stream. A third conduit is coupled to the combustor, and a first thrust augmentation device is in fluid communication with the combustor via the third conduit. The heat exchanger is positioned within the gas stream generated by the combustor.
Abstract:
A vehicle, includes a main body. A fluid generator is coupled to the main body and produces a fluid stream. At least one tail conduit is fluidly coupled to the generator. First and second fore ejectors are coupled to the main body and respectively coupled to a starboard side and port side of the vehicle. The fore ejectors respectively comprise an outlet structure out of which fluid flows. At least one tail ejector is fluidly coupled to the tail conduit. The tail ejector comprises an outlet structure out of which fluid flows. A primary airfoil element includes a closed wing having a leading edge and a trailing edge. The leading and trailing edges of the closed wing define an interior region. The at least one propulsion device is at least partially disposed within the interior region.
Abstract:
A vehicle includes a main body and a gas generator producing a gas stream. At least one fore conduit and tail conduit are fluidly coupled to the generator. First and second fore ejectors are fluidly coupled to the at least one fore conduit. At least one tail ejector is fluidly coupled to the at least one tail conduit. The fore ejectors respectively include an outlet structure out of which gas from the at least one fore conduit flows. The at least one tail ejector includes an outlet structure out of which gas from the at least one tail conduit flows. First and second primary airfoil elements have leading edges respectively located directly downstream of the first and second fore ejectors. At least one secondary airfoil element has a leading edge located directly downstream of the outlet structure of the at least one tail ejector.
Abstract:
A vehicle includes a main body and a gas generator producing a gas stream. At least one fore conduit and tail conduit are fluidly coupled to the generator. First and second fore ejectors are fluidly coupled to the at least one fore conduit. At least one tail ejector is fluidly coupled to the at least one tail conduit. The fore ejectors respectively include an outlet structure out of which gas from the at least one fore conduit flows. The at least one tail ejector includes an outlet structure out of which gas from the at least one tail conduit flows. First and second primary airfoil elements have leading edges respectively located directly downstream of the first and second fore ejectors. At least one secondary airfoil element has a leading edge located directly downstream of the outlet structure of the at least one tail ejector.
Abstract:
An internal combustion engine includes an intake conduit fluidically coupled to ambient fluid and having an internal cross-sectional area and an engine cylinder fluidically coupled to the intake conduit. A fluidic amplifier is disposed within the intake conduit and is fluidically coupled to the ambient fluid and engine cylinder. The amplifier is further fluidically coupled to a source of primary fluid and is configured to introduce the primary fluid and at least a portion of the ambient fluid to the engine cylinder.