Abstract:
A catalyst containing a carbon support and a core-shell nanoparticle supported on the carbon support, wherein a core of the core-shell nanoparticle is cobalt metal not containing a heterogeneous element and the shell contains carbon. The catalyst for an oxygen reduction reaction of the present disclosure is a catalyst in which the cobalt core-carbon shell nanoparticle is supported on the carbon support through ligand stabilization and heat treatment. The catalyst can be synthesized to have high dispersibility. In particular, it can be used as an electrode catalyst of a cathode to improve the oxygen reduction activity and durability of a fuel cell operating under an alkaline atmosphere.
Abstract:
Provided is a composite polymer electrolyte membrane for a fuel cell, including: a porous fluorinated polymer support; and a perfluorinated sulfonic acid polymer resin membrane which fills the inside of pores of the porous fluorinated polymer support and covers an external surface of the porous fluorinated polymer support.
Abstract:
Provided is a catalyst for oxygen reduction reaction comprising an alloy comprising at least one selected from Pt, Pd and Ir supported on a carbon carrier functionalized with poly(N-isopropylacrylamide) (PNIPAM). The catalyst for oxygen reduction reaction has electronic ensemble effects by virtue of the carbon carrier functionalized with poly(N-isopropylacrylamide) (PNIPAM), and thus shows improved oxygen reduction activity and durability as compared to conventional catalysts supported on carbon.
Abstract:
Provided are a perfluorinated sulfonic acid polymer membrane having a porous surface layer, which includes a surface layer and a bottom layer present at the bottom of the surface layer, wherein the surface layer is a porous layer, and the bottom layer is non-porous dense layer, and a method for preparing the same through a solvent evaporation process.
Abstract:
Provided are a method for preparing a Nafion membrane having a through-pore free monolithic porous structure throughout the bulk of the membrane through a one-step process very easily and a Nafion membrane having a through-pore free monolithic porous structure obtained from the method. The Nafion membrane having such a porous structure may have an increased surface area, and thus may improve the membrane/catalyst interfacial area and transport characteristics.
Abstract:
The present disclosure relates to a polybenzimidazole-based electrolyte membrane for alkaline water electrolysis, which includes a polybenzimidazole-based polymer, wherein the polybenzimidazole-based polymer is a biaxially oriented film. The polybenzimidazole-based electrolyte membrane for alkaline water electrolysis can reduce the concentration of an alkaline solution by improving the crystallinity of a polybenzimidazole-based polymer to increase the resistance against base, significantly improving the long-term stability of alkaline water electrolysis using a polybenzimidazole-based electrolyte membrane through the improved resistance against base, and by increasing the operation temperature to enhance the catalyst activity.
Abstract:
The present disclosure relates to a polyarylene ether-based polymer for an electrolyte membrane of a fuel cell, represented by the following Chemical Formula 1. When the polyarylene ether-based polymer for an electrolyte membrane of a fuel cell is applied to the manufacture of a membrane-electrode assembly through a decal process, the hot pressing temperature may be controlled to about 120° C. so as to conform to a low glass transition temperature. Therefore, it is possible to solve the problems of deterioration of an electrolyte membrane or incomplete transfer of an electrode catalyst layer, caused by the high hot pressing temperature applied in the case of the conventional hydrocarbon-based polymer material.
Abstract:
Disclosed are a catalyst electrode for a fuel cell, a method for fabricating the catalyst electrode, and a fuel cell including the catalyst electrode. The presence of an ionomer-ionomer support composite in the catalyst electrode prevents the porous structure of the catalyst electrode from collapsing due to oxidation of a carbon support to avoid an increase in resistance to gas diffusion and can stably secure proton channels. The presence of carbon materials with high conductivity is effective in preventing the electrical conductivity of the electrode from deterioration resulting from the use of a metal oxide in the ionomer-ionomer support composite and is also effective in suppressing collapse of the porous structure of the electrode to prevent an increase in resistance to gas diffusion in the electrode. Based on these effects, the fuel cell exhibits excellent performance characteristics and prevents its performance from deteriorating during continuous operation.
Abstract:
Disclosed are a metal single-atom catalyst and a method for preparing the same. The method uses a minimal amount of chemicals and is thus environmentally friendly compared to conventional chemical and/or physical methods. In addition, the method enables the preparation of a single-atom catalyst in a simple and economical manner without the need for further treatment such as acid treatment or heat treatment. Furthermore, the method is universally applicable to the preparation of single-atom catalysts irrespective of the kinds of metals and supports, unlike conventional methods that suffer from very limited choices of metal materials and supports. Therefore, the method can be widely utilized to prepare various types of metal single-atom catalysts. All metal atoms in the metal single-atom catalyst can participate in catalytic reactions. This optimal atom utilization achieves maximum reactivity per unit mass and can minimize the amount of the metal used, which is very economical.
Abstract:
A method for preparing a carbon-supported, platinum-cobalt alloy, nanoparticle catalyst includes mixing a solution containing, in combination, a platinum precursor, a transition metal precursor consisting of a transition metal that is cobalt, carbon, a stabilizer that is oleyl amine, and a reducing agent that is sodium borohydride to provide carbon-supported, platinum-cobalt alloy nanoparticles, and washing the carbon-supported, platinum-cobalt alloy, nanoparticles using ethanol and distilled water individually or in combination followed by drying at room temperature to obtain dried carbon-supported, platinum-cobalt alloy, nanoparticles; treating the dried carbon-supported, platinum-cobalt alloy, nanoparticles with an acetic acid solution having a concentration ranging from 1-16M to provide acetic acid-treated nanoparticles, and washing the acetic acid-treated nanoparticles using distilled water followed by drying at room temperature to obtain dried acetic acid-treated nanoparticles; and heat treating the dried acetic acid-treated nanoparticles at a temperature ranging from 600 to 1000° C. under a hydrogen-containing atmosphere.