Abstract:
A developing device includes a developer bearing member, a layer restricting member, a facing magnet and a nonmagnetic member. The developer bearing member has a sleeve for bearing magnetic toner and a fixed magnet included inside the sleeve. The layer restricting member faces one magnetic pole of the fixed magnet, is arranged at a distance from the sleeve and made of a magnetic material. The facing magnet is arranged upstream of the layer restricting member in a rotation direction of the sleeve and at a distance from the sleeve, includes a first facing surface facing a position overlapping with a position with a maximum magnetic force of the one magnetic pole and has a magnetic pole having the same polarity as the one magnetic pole on the first facing surface. The nonmagnetic member is connected at an upstream side of the facing magnet in the rotation direction.
Abstract:
A developer storage container includes a container main body, a tubular portion projecting from the container main body and including a developer discharge opening, and a rotary member extending from the container main body to the tubular portion and having a function of conveying the developer in the container main body. The rotary member includes a first section located in the container main body and a second section located in the tubular portion. A first conveying member for conveying the developer from the tubular portion side toward the container main body side, a second conveying member for conveying the developer in an opposite direction, and a flexible member are mounted on the rotary shaft. The flexible member includes a fixed end portion fixed onto the circumferential surface of the rotary shaft and a free end portion arranged at a side radially outward of the second conveying member.
Abstract:
A developing device includes a developing container, a first stirring conveyance member, a second stirring conveyance member, a developer carrying member including a developing sleeve and a magnet, and a regulation member. The regulation pole in the magnet has a region extending over 10° or more in which a maximum value of a vertical magnetic force is not more than 65 [mT] and a vertical magnetic force gradient is not more than 0.3 [mT/°]. A peak position of the vertical magnetic force gradient of the regulation pole is arranged at a position opposed to the second stirring conveyance member, and when a value of the vertical magnetic force gradient and a value of the vertical magnetic force at the peak position of the vertical magnetic force gradient are indicated as A [mT/°] and K [mT], respectively, A≥2.8 and A×K≥62.5 are satisfied.
Abstract:
An image forming apparatus includes an image-carrying member, a first acquisition processing portion, and a second acquisition processing portion. An electrostatic latent image is formed on the image-carrying member. The first acquisition processing portion acquires the potential value of the image-carrying member. The second acquisition processing portion acquires the temperature value of the image-carrying member based on the potential value of the image-carrying member acquired by the first acquisition processing portion.
Abstract:
An image forming apparatus includes: a development device which develops an electrostatic latent image formed on a photosensitive drum into a toner image; a charger which charges the photosensitive drum; a development power supply which applies a prescribed bias voltage to the development device; and a calculating section which calculates a surface potential of the photosensitive drum based on a development current flowing in the development device. The calculating section calculates, as the surface potential, a bias voltage at which a non-charging development current that flows in the development device in an uncharged state in which the charger has not charged the photosensitive drum is equal to a charging development current that flows in the development device in a charged state in which the charger has charged the photosensitive drum.
Abstract:
An image forming apparatus includes an image carrier, a charging device, a developing device, a developing power source, a current measuring device, and a processor. On a surface of the image carrier, an electrostatic latent image is formed. The charging device electrically charges the image carrier. The developing device forms a toner image, by supplying toner to the image carrier and developing the electrostatic latent image formed on the image carrier. The developing power source applies a predetermined bias voltage to the developing device. The current measuring device measures a developing current flowing in the developing device. The processor acts, by executing a control program, as a calculator that calculates a surface potential of the image carrier, on a basis of the developing current measured by the measuring device.
Abstract:
An image forming apparatus includes: a development device which develops an electrostatic latent image formed on a photosensitive drum into a toner image; a charger which charges the photosensitive drum; a development power supply which applies a bias voltage to the development device; a calculating section which calculates a surface potential of the photosensitive drum based on a development current flowing in the development device; and an estimating section which estimates a fogging toner amount. The fogging toner amount is an amount of toner moved due to fogging. When the fogging toner amount estimated by the estimating section is less than a prescribed threshold, the calculating section calculates a value of the bias voltage at which the development current stops flowing as the surface potential.
Abstract:
A developing device includes a developer container, a developer carrier, and first and second stirring/conveying members. The developer container includes a first partition wall partitioning between the two conveying chambers longitudinally, a first communication portion for passing developer from the first to the second conveying chamber, a second communication portion for passing developer from the second to the first conveying chamber, a developer supply port for supplying developer in, a developer discharge portion for discharging excessive developer, a second partition wall arranged, adjacent to the regulating portion, downstream of the second communication portion to partition between the first conveying chamber and the regulating portion, and a shield portion connected to the two partition walls to bridge between them to shield a top part of the second communication portion. A gap is formed between an upper end part of the shield portion and the inner surface of the developer container.
Abstract:
A developing device includes a developer container, a developer carrier, and first and second members for stirring/conveying. The developer container includes a first partition wall between first and second chambers, a communication portion through which those chambers communicate at opposite ends of the first partition wall, a developer supply port, and a developer discharge portion. The first member stirs and conveys developer in the first chamber in a first direction. The second member stirs and conveys developer in the second chamber in a second direction and includes a regulating portion and a discharging blade. The developer container includes a second partition wall between the first chamber and the regulating portion. The gap from the upper end of the second partition wall to the inner surface of the developer container is larger than the gap thereto from the upper ends of a first helical blade and the regulating portion.
Abstract:
An image forming apparatus includes a plurality of image forming units, a developing voltage power supply, a density detection device, a current detection unit, and a control unit. The plurality of image forming units form an image and substantially same development conditions are set to evenly divide an image density among the image forming units. The control unit detects whether there is an anomaly in a developing device, based on a toner charge amount calculated based on a DC component of developing current when a reference image is formed on an image carrier by each of the developing devices and a density of the reference image. When an anomaly is detected in any of the developing devices, the control unit inhibits use of the image forming unit including the developing device, and resets the development conditions to evenly divide the image density among the usable image forming units.