Abstract:
Disclosed is a wireless power transfer system-charger for wireless power transmission. The wireless power transfer system-charger includes: a power converting unit to convert a DC signal into an AC signal; a control unit to control the power converting unit with a first or second operating frequency; and an induction-type antenna system and a resonance-type antenna system connected in parallel to each other, wherein power is transmitted through the induction-type antenna system or the resonance-type antenna system according to a control of the control unit.
Abstract:
A wireless power transmission device for wirelessly transmitting power to a wireless power reception device, according to one embodiment of the present invention, comprises: a first transmission coil for transmitting power to the wireless power reception device through a magnetic field; and a second transmission coil for transmitting power to the wireless power reception device through a magnetic field and arranged on the inner side of the first transmission coil, wherein the wireless power transmission device transmits power to the wireless power reception device through one coil between the first transmission coil and the second transmission coil on the basis of a coupling state between the wireless power transmission device and the wireless power reception device.
Abstract:
Disclosed is a wireless power transmission apparatus to wirelessly transmit power to a wireless power receiving apparatus by using resonance. The wireless power transmission apparatus includes a transmission part including a transmission coil to receive the power from a power supply to generate a magnetic field, a transmission resonance coil to transmit power received therein from the transmission coil, and a plurality of repeating coils placed in the transmission resonance coil to repeat the power, a detection part to detect a position of the wireless power receiving apparatus placed on the transmission part, and a controller to determine a repeating coil corresponding to the position of the wireless power receiving apparatus and perform a control operation to transmit power through the repeating coil.
Abstract:
A wireless power transfer system is disclosed. A mouse system includes a mouse pad for wirelessly transmitting power and a wireless mouse for wirelessly receiving power. The mouse pad receives control information related to control of the position of a mouse pointer from the wireless mouse through wireless communication and transmits the received control information to a computer to control the position of the mouse pointer.
Abstract:
Disclosed are an electronic device, a wireless power reception apparatus, and a display device. The electronic device, which is equipped with a wireless power receiving apparatus to wirelessly receive power from a wireless power transmission apparatus, includes a signal receiving part to receive a signal required to operate the electronic device, and a wireless power signal removing part to remove a signal having a frequency used for wireless power transmission among signals received in the signal receiving part.
Abstract:
Disclosed are a wireless power transmitter, a wireless power receiver, and a method of wirelessly receiving power. The wireless power receiver includes a receiving unit receiving the power from the wireless power transmitter using resonance, and a rectifying unit rectifying the power received therein from the receiving unit to supply the power to a load side. The rectifying unit changes an output impedance of the wireless power receiver in order to change an input current of the wireless power transmitter.
Abstract:
The present invention relates to a wireless power transmission method and apparatus therefor. A wireless power transmitter according to an embodiment may comprise: a plurality of transmission coils; an alternating current power generator for generating a plurality of alternating current power signals applied to the plurality of transmission coils; a power source for supplying direct current power to the alternating current power generator; and a controller for controlling the phases of the plurality of alternating current power signals, wherein the controller changes the phase of at least one of the plurality of alternating current power signals to control transmission power output through the plurality of transmission coils. Therefore, the present invention provides an advantage in that a wireless power transmitter including a plurality of transmission coils can more precisely control wireless power.
Abstract:
Disclosed are a wireless power transmitting apparatus and a method thereof. The wireless power transmitting apparatus wirelessly transmits power to a wireless power receiving apparatus. The wireless power transmitting apparatus detects a wireless power transmission state between the wireless power transmitting apparatus and the wireless power receiving apparatus, and generates a control signal to control transmit power based on the detected wireless power transmission state. The wireless power transmitting apparatus generates the transmit power by using first DC power based on the control signal, and transmits the transmit power to a transmission resonance coil through a transmission induction coil unit based on an electromagnetic induction scheme.
Abstract:
A wireless power control method in a wireless power transmission device for wirelessly transmitting power to a wireless power reception device. The method includes receiving a first control signal from the wireless power reception device at a first time interval; sensing a current within the wireless power transmission device to generate a second control signal at a second time interval; and controlling a wireless power based on the first control signal and the second control signal, and in which the first time interval is longer than the second time interval.
Abstract:
A mouse pad includes a wireless power transmission apparatus including at least a first transmission coil and a second transmission coil and configured to wirelessly transmit power to a mouse placed on the mouse pad; and a controller configured to directly receive determination information for selecting one transmission coil among the first transmission coil and the second transmission coil according to a movement of the mouse on the mouse pad from a power supply connected to the mouse pad, and enable the second transmission coil and disable the first transmission coil when the movement of the mouse indicates the mouse is moving on the mouse pad from the first transmission coil to the second transmission coil.