-
公开(公告)号:US20180284240A1
公开(公告)日:2018-10-04
申请号:US15940482
申请日:2018-03-29
Applicant: LUMINAR TECHNOLOGIES, INC.
Inventor: Joseph G. LaChapelle , Scott R. Campbell , Jason M. Eichenholz , Matthew D. Weed
Abstract: A lidar system comprises a light source configured to emit pulses of light, a scanner configured to direct the pulses of light along a scan direction, where each of the pulses of light illuminates a respective field of view of the light source, and a receiver configured to detect the pulses of light scattered by remote targets. The receiver includes a low-gain detector associated with a low gain and a high-gain detector associated with a high gain. The low-gain detector is positioned so that a first scattered pulse of light that returns from a first target, located closer to the receiver than a second target, is detected primarily by the low-gain detector, and a second scattered pulse of light that returns from the second target is detected primarily by the high-gain detector.
-
公开(公告)号:US20180284226A1
公开(公告)日:2018-10-04
申请号:US15909012
申请日:2018-03-01
Applicant: LUMINAR TECHNOLOGIES, INC.
Inventor: Joseph G. LaChapelle , Matthew D. Weed , Scott R. Campbell , Jason M. Eichenholz , Austin K. Russell , Lane A. Martin
CPC classification number: G01S7/484 , G01S7/003 , G01S7/4868 , G01S7/497 , G01S17/10 , G01S17/42 , G01S17/936 , G01S17/95 , G01S2007/4975 , G01W1/02 , G01W1/14 , Y02A90/19
Abstract: To detect an atmospheric condition at the current location of a lidar system, a receiver in the lidar system detects a return light pulse scattered by a target and analyzes the characteristics of the return light pulse. The characteristics of the return light pulse include a rise time, a fall time, a duration, a peak power, an amount of energy, etc. When the rise time, fall time, and/or duration exceed respective thresholds, the lidar system detects the atmospheric condition such as fog, sleet, snow, rain, dust, smog, exhaust, or insects. In response to detecting the atmospheric condition, the lidar system adjusts the characteristics of subsequent pulses to compensate for attenuation or distortion of return light pulses due to the atmospheric condition. For example, the lidar system adjusts the peak power, pulse energy, pulse duration, inter-pulse-train spacing, number of pulses, or any other suitable characteristic.
-
公开(公告)号:US20180088236A1
公开(公告)日:2018-03-29
申请号:US15818501
申请日:2017-11-20
Applicant: Luminar Technologies, Inc.
Inventor: Jason M. Eichenholz , Austin K. Russell , Scott R. Campbell , Alain Villeneuve , Rodger W. Cleye , Joseph G. LaChapelle , Matthew D. Weed , Lane A. Martin
CPC classification number: G01S17/06 , G01S7/4804 , G01S7/4811 , G01S7/4814 , G01S7/4815 , G01S7/4816 , G01S7/4817 , G01S7/4818 , G01S7/483 , G01S7/484 , G01S7/4861 , G01S7/4863 , G01S7/4865 , G01S17/00 , G01S17/02 , G01S17/08 , G01S17/10 , G01S17/32 , G01S17/42 , G01S17/88 , G01S17/89 , G01S17/936 , H01S3/0007 , H01S3/0078 , H01S3/0085 , H01S3/06733 , H01S3/0675 , H01S3/06754 , H01S3/06758 , H01S3/08086 , H01S3/094003 , H01S3/094042 , H01S3/094076 , H01S3/0941 , H01S3/10023 , H01S3/1106 , H01S3/1608 , H01S3/2383 , H01S5/0057 , H01S5/0085 , H01S5/4012 , H01S5/4087 , H01S2301/02
Abstract: A lidar system with a light source to emit a pulse of light and a receiver to detect a return pulse of light. The receiver can include a first channel to receive a first portion of the return pulse and produce a first digital output signal, and a second channel to receive a second portion of the return pulse and produce a second digital output signal. The receiver can include a logic circuit to produce an output electrical-edge signal in response to receiving the digital output signals. The receiver can also include a time-to-digital converter to determine a time interval based on an emission time of the pulse of light and based on the electrical-edge signal. The lidar system can also include a processor to determine a distance to a target based at least in part on the time interval.
-
公开(公告)号:US09857468B1
公开(公告)日:2018-01-02
申请号:US15470708
申请日:2017-03-27
Applicant: Luminar Technologies, Inc.
Inventor: Jason M. Eichenholz , Austin K. Russell , Scott R. Campbell , Alain Villeneuve , Rodger W. Cleye , Joseph G. LaChapelle , Matthew D. Weed , Lane A. Martin
CPC classification number: G01S17/06 , G01S7/4804 , G01S7/4811 , G01S7/4814 , G01S7/4815 , G01S7/4816 , G01S7/4817 , G01S7/4818 , G01S7/483 , G01S7/484 , G01S7/4861 , G01S7/4863 , G01S7/4865 , G01S17/00 , G01S17/02 , G01S17/08 , G01S17/10 , G01S17/32 , G01S17/42 , G01S17/88 , G01S17/89 , G01S17/936 , H01S3/0007 , H01S3/0078 , H01S3/0085 , H01S3/06733 , H01S3/0675 , H01S3/06754 , H01S3/06758 , H01S3/08086 , H01S3/094003 , H01S3/094042 , H01S3/094076 , H01S3/0941 , H01S3/10023 , H01S3/1106 , H01S3/1608 , H01S3/2383 , H01S5/0057 , H01S5/0085 , H01S5/4012 , H01S5/4087 , H01S2301/02
Abstract: A lidar system with a pulsed laser diode configured to produce an optical seed pulse of light at an operating wavelength between approximately 1400 nm and approximately 1600 nm. The lidar system may also include an optical amplifier configured to amplify the optical seed pulse to produce an eye-safe output optical pulse that is emitted into a field of view. The optical amplifier may produce an amount of amplified spontaneous emission (ASE) associated with the output optical pulse. The lidar system may include an optical filter configured to filter the output optical pulse to reduce the associated ASE. The lidar system may also include a receiver configured to detect at least a portion of the output optical pulse reflected or scattered from the field of view.
-
公开(公告)号:US12248102B2
公开(公告)日:2025-03-11
申请号:US16773409
申请日:2020-01-27
Applicant: Luminar Technologies, Inc.
Inventor: Scott R Campbell , Joseph G. LaChapelle , Jason M. Eichenholz , Austin K. Russell
IPC: G01C3/08 , G01S7/481 , G01S7/484 , G01S7/4861 , G01S7/497 , G01S17/26 , G01S17/89 , G01S17/931
Abstract: A lidar system includes a transmitter that encodes successive transmit pulses with different pulse characteristics and a receiver that detects the pulse characteristics of each received (scattered or reflected) pulse and that distinguishes between the received pulses based on the detected pulse characteristics. The lidar system thus resolves range ambiguities by encoding pulses of scan positions in the same or different scan periods to have different pulse characteristics, such as different pulse widths or different pulse envelope shapes. The receiver includes a pulse decoder configured to detect the relevant pulse characteristics of the received pulse and a resolver that determines if the pulse characteristics of the received pulse matches the pulse characteristics of the current scan position or that of a previous scan position.
-
公开(公告)号:US12228650B2
公开(公告)日:2025-02-18
申请号:US17183522
申请日:2021-02-24
Applicant: Luminar Technologies, Inc.
Inventor: Joseph G. LaChapelle , Jason M. Eichenholz , Alex Michael Sincore , Lawrence Shah
IPC: G01S17/93 , B60W60/00 , G01S7/481 , G01S7/484 , G01S7/486 , G01S7/4861 , G01S7/4865 , G01S17/10 , G01S17/26 , G01S17/88 , G01S17/931 , G02B6/12 , H01S5/026 , H01S5/065 , H01S5/125
Abstract: In one embodiment, a light source is configured to emit an optical signal. The light source includes a seed laser diode configured to produce a seed optical signal and a semiconductor optical amplifier (SOA) configured to amplify the seed optical signal to produce the emitted optical signal. The light source also includes an optical isolator disposed between the seed laser diode and the SOA, where the optical isolator is configured to (i) transmit the seed optical signal to the SOA and (ii) reduce an amount of light that propagates from the SOA toward the seed laser diode.
-
公开(公告)号:US20240175996A1
公开(公告)日:2024-05-30
申请号:US18070177
申请日:2022-11-28
Applicant: Luminar Technologies, Inc.
IPC: G01S7/4865 , G01S7/481 , G01S17/89 , G01S17/931
CPC classification number: G01S7/4865 , G01S7/4814 , G01S7/4817 , G01S17/89 , G01S17/931
Abstract: A system includes one or more light sources configured to transmit at least a first light pulse encoding and a second light pulse encoding. The system also includes one or more detectors configured to detect a received light signal. The system further includes one or more processors configured to: determine a derivative data of the detected received light signal including by computing a derivative based on the detected received light signal, correlate the derivative data with at least a first reference data corresponding to the first light pulse encoding and a second reference data corresponding to the second light pulse encoding to determine a correlation result, and use the correlation result to identify which transmitted light pulse encoding corresponds to the received light signal.
-
公开(公告)号:US20200256960A1
公开(公告)日:2020-08-13
申请号:US16788762
申请日:2020-02-12
Applicant: Luminar Technologies, Inc.
Inventor: Joseph G. LaChapelle , Philip W. Smith , Matthew D. Weed , Jason M. Eichenholz
IPC: G01S7/481 , G01S7/4863
Abstract: In one embodiment, a lidar system includes a light source configured to emit a pulse of light and a scanner configured to direct the emitted pulse of light into a field of regard of the lidar system. The lidar system also includes a receiver configured to receive a portion of the emitted pulse of light scattered by a target located a distance from the lidar system. The receiver includes a digital micromirror device (DMD) that includes a two-dimensional array of electrically addressable micromirrors, where a portion of the micromirrors are configured to be set to an active-on state to direct the received pulse of light to a detector array. The detector array includes a two-dimensional array of detector elements, where the detector array is configured to detect the received pulse of light and produce an electrical signal corresponding to the received pulse of light.
-
公开(公告)号:US20200049821A1
公开(公告)日:2020-02-13
申请号:US16059638
申请日:2018-08-09
Applicant: LUMINAR TECHNOLOGIES, INC.
Inventor: Joseph G. LaChapelle
Abstract: A method in a lidar system comprises emitting a pulse of light, detecting at least a portion of the emitted pulse of light scattered by a target located a distance from the lidar system, and determining the distance from the lidar system to the target based at least in part on a round-trip time of flight for the emitted pulse of light to travel from the lidar system to the target and back to the lidar system. The method further comprises emitting a series of pulses of light having particular pulse-frequency characteristics, detecting at least a portion of the series of emitted pulses of light scattered by the target, and comparing the pulse-frequency characteristics of the series of emitted pulses of light with corresponding pulse-frequency characteristics of the detected series of scattered pulses of light to determine a velocity of the target with respect to the lidar system.
-
公开(公告)号:US10551501B1
公开(公告)日:2020-02-04
申请号:US16059638
申请日:2018-08-09
Applicant: LUMINAR TECHNOLOGIES, INC.
Inventor: Joseph G. LaChapelle
Abstract: A method in a lidar system comprises emitting a pulse of light, detecting at least a portion of the emitted pulse of light scattered by a target located a distance from the lidar system, and determining the distance from the lidar system to the target based at least in part on a round-trip time of flight for the emitted pulse of light to travel from the lidar system to the target and back to the lidar system. The method further comprises emitting a series of pulses of light having particular pulse-frequency characteristics, detecting at least a portion of the series of emitted pulses of light scattered by the target, and comparing the pulse-frequency characteristics of the series of emitted pulses of light with corresponding pulse-frequency characteristics of the detected series of scattered pulses of light to determine a velocity of the target with respect to the lidar system.
-
-
-
-
-
-
-
-
-